~tsileo/blobstash

ref: d62b4924ec016bd250d26f05ac5570f60374e0f2 blobstash/vendor/golang.org/x/crypto/ssh/keys.go -rw-r--r-- 32.7 KiB View raw
d62b4924Thomas Sileo filetree/lua: add new upload_file Lua function a month ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssh

import (
	"bytes"
	"crypto"
	"crypto/dsa"
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/md5"
	"crypto/rsa"
	"crypto/sha256"
	"crypto/x509"
	"encoding/asn1"
	"encoding/base64"
	"encoding/hex"
	"encoding/pem"
	"errors"
	"fmt"
	"io"
	"math/big"
	"strings"

	"golang.org/x/crypto/ed25519"
)

// These constants represent the algorithm names for key types supported by this
// package.
const (
	KeyAlgoRSA        = "ssh-rsa"
	KeyAlgoDSA        = "ssh-dss"
	KeyAlgoECDSA256   = "ecdsa-sha2-nistp256"
	KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
	KeyAlgoECDSA384   = "ecdsa-sha2-nistp384"
	KeyAlgoECDSA521   = "ecdsa-sha2-nistp521"
	KeyAlgoED25519    = "ssh-ed25519"
	KeyAlgoSKED25519  = "sk-ssh-ed25519@openssh.com"
)

// These constants represent non-default signature algorithms that are supported
// as algorithm parameters to AlgorithmSigner.SignWithAlgorithm methods. See
// [PROTOCOL.agent] section 4.5.1 and
// https://tools.ietf.org/html/draft-ietf-curdle-rsa-sha2-10
const (
	SigAlgoRSA        = "ssh-rsa"
	SigAlgoRSASHA2256 = "rsa-sha2-256"
	SigAlgoRSASHA2512 = "rsa-sha2-512"
)

// parsePubKey parses a public key of the given algorithm.
// Use ParsePublicKey for keys with prepended algorithm.
func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
	switch algo {
	case KeyAlgoRSA:
		return parseRSA(in)
	case KeyAlgoDSA:
		return parseDSA(in)
	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
		return parseECDSA(in)
	case KeyAlgoSKECDSA256:
		return parseSKECDSA(in)
	case KeyAlgoED25519:
		return parseED25519(in)
	case KeyAlgoSKED25519:
		return parseSKEd25519(in)
	case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
		cert, err := parseCert(in, certToPrivAlgo(algo))
		if err != nil {
			return nil, nil, err
		}
		return cert, nil, nil
	}
	return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
}

// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
// (see sshd(8) manual page) once the options and key type fields have been
// removed.
func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
	in = bytes.TrimSpace(in)

	i := bytes.IndexAny(in, " \t")
	if i == -1 {
		i = len(in)
	}
	base64Key := in[:i]

	key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
	n, err := base64.StdEncoding.Decode(key, base64Key)
	if err != nil {
		return nil, "", err
	}
	key = key[:n]
	out, err = ParsePublicKey(key)
	if err != nil {
		return nil, "", err
	}
	comment = string(bytes.TrimSpace(in[i:]))
	return out, comment, nil
}

// ParseKnownHosts parses an entry in the format of the known_hosts file.
//
// The known_hosts format is documented in the sshd(8) manual page. This
// function will parse a single entry from in. On successful return, marker
// will contain the optional marker value (i.e. "cert-authority" or "revoked")
// or else be empty, hosts will contain the hosts that this entry matches,
// pubKey will contain the public key and comment will contain any trailing
// comment at the end of the line. See the sshd(8) manual page for the various
// forms that a host string can take.
//
// The unparsed remainder of the input will be returned in rest. This function
// can be called repeatedly to parse multiple entries.
//
// If no entries were found in the input then err will be io.EOF. Otherwise a
// non-nil err value indicates a parse error.
func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
	for len(in) > 0 {
		end := bytes.IndexByte(in, '\n')
		if end != -1 {
			rest = in[end+1:]
			in = in[:end]
		} else {
			rest = nil
		}

		end = bytes.IndexByte(in, '\r')
		if end != -1 {
			in = in[:end]
		}

		in = bytes.TrimSpace(in)
		if len(in) == 0 || in[0] == '#' {
			in = rest
			continue
		}

		i := bytes.IndexAny(in, " \t")
		if i == -1 {
			in = rest
			continue
		}

		// Strip out the beginning of the known_host key.
		// This is either an optional marker or a (set of) hostname(s).
		keyFields := bytes.Fields(in)
		if len(keyFields) < 3 || len(keyFields) > 5 {
			return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
		}

		// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
		// list of hosts
		marker := ""
		if keyFields[0][0] == '@' {
			marker = string(keyFields[0][1:])
			keyFields = keyFields[1:]
		}

		hosts := string(keyFields[0])
		// keyFields[1] contains the key type (e.g. “ssh-rsa”).
		// However, that information is duplicated inside the
		// base64-encoded key and so is ignored here.

		key := bytes.Join(keyFields[2:], []byte(" "))
		if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
			return "", nil, nil, "", nil, err
		}

		return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
	}

	return "", nil, nil, "", nil, io.EOF
}

// ParseAuthorizedKeys parses a public key from an authorized_keys
// file used in OpenSSH according to the sshd(8) manual page.
func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
	for len(in) > 0 {
		end := bytes.IndexByte(in, '\n')
		if end != -1 {
			rest = in[end+1:]
			in = in[:end]
		} else {
			rest = nil
		}

		end = bytes.IndexByte(in, '\r')
		if end != -1 {
			in = in[:end]
		}

		in = bytes.TrimSpace(in)
		if len(in) == 0 || in[0] == '#' {
			in = rest
			continue
		}

		i := bytes.IndexAny(in, " \t")
		if i == -1 {
			in = rest
			continue
		}

		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
			return out, comment, options, rest, nil
		}

		// No key type recognised. Maybe there's an options field at
		// the beginning.
		var b byte
		inQuote := false
		var candidateOptions []string
		optionStart := 0
		for i, b = range in {
			isEnd := !inQuote && (b == ' ' || b == '\t')
			if (b == ',' && !inQuote) || isEnd {
				if i-optionStart > 0 {
					candidateOptions = append(candidateOptions, string(in[optionStart:i]))
				}
				optionStart = i + 1
			}
			if isEnd {
				break
			}
			if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
				inQuote = !inQuote
			}
		}
		for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
			i++
		}
		if i == len(in) {
			// Invalid line: unmatched quote
			in = rest
			continue
		}

		in = in[i:]
		i = bytes.IndexAny(in, " \t")
		if i == -1 {
			in = rest
			continue
		}

		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
			options = candidateOptions
			return out, comment, options, rest, nil
		}

		in = rest
		continue
	}

	return nil, "", nil, nil, errors.New("ssh: no key found")
}

// ParsePublicKey parses an SSH public key formatted for use in
// the SSH wire protocol according to RFC 4253, section 6.6.
func ParsePublicKey(in []byte) (out PublicKey, err error) {
	algo, in, ok := parseString(in)
	if !ok {
		return nil, errShortRead
	}
	var rest []byte
	out, rest, err = parsePubKey(in, string(algo))
	if len(rest) > 0 {
		return nil, errors.New("ssh: trailing junk in public key")
	}

	return out, err
}

// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
// authorized_keys file. The return value ends with newline.
func MarshalAuthorizedKey(key PublicKey) []byte {
	b := &bytes.Buffer{}
	b.WriteString(key.Type())
	b.WriteByte(' ')
	e := base64.NewEncoder(base64.StdEncoding, b)
	e.Write(key.Marshal())
	e.Close()
	b.WriteByte('\n')
	return b.Bytes()
}

// PublicKey is an abstraction of different types of public keys.
type PublicKey interface {
	// Type returns the key's type, e.g. "ssh-rsa".
	Type() string

	// Marshal returns the serialized key data in SSH wire format,
	// with the name prefix. To unmarshal the returned data, use
	// the ParsePublicKey function.
	Marshal() []byte

	// Verify that sig is a signature on the given data using this
	// key. This function will hash the data appropriately first.
	Verify(data []byte, sig *Signature) error
}

// CryptoPublicKey, if implemented by a PublicKey,
// returns the underlying crypto.PublicKey form of the key.
type CryptoPublicKey interface {
	CryptoPublicKey() crypto.PublicKey
}

// A Signer can create signatures that verify against a public key.
type Signer interface {
	// PublicKey returns an associated PublicKey instance.
	PublicKey() PublicKey

	// Sign returns raw signature for the given data. This method
	// will apply the hash specified for the keytype to the data.
	Sign(rand io.Reader, data []byte) (*Signature, error)
}

// A AlgorithmSigner is a Signer that also supports specifying a specific
// algorithm to use for signing.
type AlgorithmSigner interface {
	Signer

	// SignWithAlgorithm is like Signer.Sign, but allows specification of a
	// non-default signing algorithm. See the SigAlgo* constants in this
	// package for signature algorithms supported by this package. Callers may
	// pass an empty string for the algorithm in which case the AlgorithmSigner
	// will use its default algorithm.
	SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
}

type rsaPublicKey rsa.PublicKey

func (r *rsaPublicKey) Type() string {
	return "ssh-rsa"
}

// parseRSA parses an RSA key according to RFC 4253, section 6.6.
func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
	var w struct {
		E    *big.Int
		N    *big.Int
		Rest []byte `ssh:"rest"`
	}
	if err := Unmarshal(in, &w); err != nil {
		return nil, nil, err
	}

	if w.E.BitLen() > 24 {
		return nil, nil, errors.New("ssh: exponent too large")
	}
	e := w.E.Int64()
	if e < 3 || e&1 == 0 {
		return nil, nil, errors.New("ssh: incorrect exponent")
	}

	var key rsa.PublicKey
	key.E = int(e)
	key.N = w.N
	return (*rsaPublicKey)(&key), w.Rest, nil
}

func (r *rsaPublicKey) Marshal() []byte {
	e := new(big.Int).SetInt64(int64(r.E))
	// RSA publickey struct layout should match the struct used by
	// parseRSACert in the x/crypto/ssh/agent package.
	wirekey := struct {
		Name string
		E    *big.Int
		N    *big.Int
	}{
		KeyAlgoRSA,
		e,
		r.N,
	}
	return Marshal(&wirekey)
}

func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
	var hash crypto.Hash
	switch sig.Format {
	case SigAlgoRSA:
		hash = crypto.SHA1
	case SigAlgoRSASHA2256:
		hash = crypto.SHA256
	case SigAlgoRSASHA2512:
		hash = crypto.SHA512
	default:
		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
	}
	h := hash.New()
	h.Write(data)
	digest := h.Sum(nil)
	return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, sig.Blob)
}

func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
	return (*rsa.PublicKey)(r)
}

type dsaPublicKey dsa.PublicKey

func (k *dsaPublicKey) Type() string {
	return "ssh-dss"
}

func checkDSAParams(param *dsa.Parameters) error {
	// SSH specifies FIPS 186-2, which only provided a single size
	// (1024 bits) DSA key. FIPS 186-3 allows for larger key
	// sizes, which would confuse SSH.
	if l := param.P.BitLen(); l != 1024 {
		return fmt.Errorf("ssh: unsupported DSA key size %d", l)
	}

	return nil
}

// parseDSA parses an DSA key according to RFC 4253, section 6.6.
func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
	var w struct {
		P, Q, G, Y *big.Int
		Rest       []byte `ssh:"rest"`
	}
	if err := Unmarshal(in, &w); err != nil {
		return nil, nil, err
	}

	param := dsa.Parameters{
		P: w.P,
		Q: w.Q,
		G: w.G,
	}
	if err := checkDSAParams(&param); err != nil {
		return nil, nil, err
	}

	key := &dsaPublicKey{
		Parameters: param,
		Y:          w.Y,
	}
	return key, w.Rest, nil
}

func (k *dsaPublicKey) Marshal() []byte {
	// DSA publickey struct layout should match the struct used by
	// parseDSACert in the x/crypto/ssh/agent package.
	w := struct {
		Name       string
		P, Q, G, Y *big.Int
	}{
		k.Type(),
		k.P,
		k.Q,
		k.G,
		k.Y,
	}

	return Marshal(&w)
}

func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
	if sig.Format != k.Type() {
		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
	}
	h := crypto.SHA1.New()
	h.Write(data)
	digest := h.Sum(nil)

	// Per RFC 4253, section 6.6,
	// The value for 'dss_signature_blob' is encoded as a string containing
	// r, followed by s (which are 160-bit integers, without lengths or
	// padding, unsigned, and in network byte order).
	// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
	if len(sig.Blob) != 40 {
		return errors.New("ssh: DSA signature parse error")
	}
	r := new(big.Int).SetBytes(sig.Blob[:20])
	s := new(big.Int).SetBytes(sig.Blob[20:])
	if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
		return nil
	}
	return errors.New("ssh: signature did not verify")
}

func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
	return (*dsa.PublicKey)(k)
}

type dsaPrivateKey struct {
	*dsa.PrivateKey
}

func (k *dsaPrivateKey) PublicKey() PublicKey {
	return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
}

func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
	return k.SignWithAlgorithm(rand, data, "")
}

func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
	if algorithm != "" && algorithm != k.PublicKey().Type() {
		return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
	}

	h := crypto.SHA1.New()
	h.Write(data)
	digest := h.Sum(nil)
	r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
	if err != nil {
		return nil, err
	}

	sig := make([]byte, 40)
	rb := r.Bytes()
	sb := s.Bytes()

	copy(sig[20-len(rb):20], rb)
	copy(sig[40-len(sb):], sb)

	return &Signature{
		Format: k.PublicKey().Type(),
		Blob:   sig,
	}, nil
}

type ecdsaPublicKey ecdsa.PublicKey

func (k *ecdsaPublicKey) Type() string {
	return "ecdsa-sha2-" + k.nistID()
}

func (k *ecdsaPublicKey) nistID() string {
	switch k.Params().BitSize {
	case 256:
		return "nistp256"
	case 384:
		return "nistp384"
	case 521:
		return "nistp521"
	}
	panic("ssh: unsupported ecdsa key size")
}

type ed25519PublicKey ed25519.PublicKey

func (k ed25519PublicKey) Type() string {
	return KeyAlgoED25519
}

func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
	var w struct {
		KeyBytes []byte
		Rest     []byte `ssh:"rest"`
	}

	if err := Unmarshal(in, &w); err != nil {
		return nil, nil, err
	}

	key := ed25519.PublicKey(w.KeyBytes)

	return (ed25519PublicKey)(key), w.Rest, nil
}

func (k ed25519PublicKey) Marshal() []byte {
	w := struct {
		Name     string
		KeyBytes []byte
	}{
		KeyAlgoED25519,
		[]byte(k),
	}
	return Marshal(&w)
}

func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
	if sig.Format != k.Type() {
		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
	}

	edKey := (ed25519.PublicKey)(k)
	if ok := ed25519.Verify(edKey, b, sig.Blob); !ok {
		return errors.New("ssh: signature did not verify")
	}

	return nil
}

func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
	return ed25519.PublicKey(k)
}

func supportedEllipticCurve(curve elliptic.Curve) bool {
	return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
}

// ecHash returns the hash to match the given elliptic curve, see RFC
// 5656, section 6.2.1
func ecHash(curve elliptic.Curve) crypto.Hash {
	bitSize := curve.Params().BitSize
	switch {
	case bitSize <= 256:
		return crypto.SHA256
	case bitSize <= 384:
		return crypto.SHA384
	}
	return crypto.SHA512
}

// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
	var w struct {
		Curve    string
		KeyBytes []byte
		Rest     []byte `ssh:"rest"`
	}

	if err := Unmarshal(in, &w); err != nil {
		return nil, nil, err
	}

	key := new(ecdsa.PublicKey)

	switch w.Curve {
	case "nistp256":
		key.Curve = elliptic.P256()
	case "nistp384":
		key.Curve = elliptic.P384()
	case "nistp521":
		key.Curve = elliptic.P521()
	default:
		return nil, nil, errors.New("ssh: unsupported curve")
	}

	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
	if key.X == nil || key.Y == nil {
		return nil, nil, errors.New("ssh: invalid curve point")
	}
	return (*ecdsaPublicKey)(key), w.Rest, nil
}

func (k *ecdsaPublicKey) Marshal() []byte {
	// See RFC 5656, section 3.1.
	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
	// ECDSA publickey struct layout should match the struct used by
	// parseECDSACert in the x/crypto/ssh/agent package.
	w := struct {
		Name string
		ID   string
		Key  []byte
	}{
		k.Type(),
		k.nistID(),
		keyBytes,
	}

	return Marshal(&w)
}

func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
	if sig.Format != k.Type() {
		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
	}

	h := ecHash(k.Curve).New()
	h.Write(data)
	digest := h.Sum(nil)

	// Per RFC 5656, section 3.1.2,
	// The ecdsa_signature_blob value has the following specific encoding:
	//    mpint    r
	//    mpint    s
	var ecSig struct {
		R *big.Int
		S *big.Int
	}

	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
		return err
	}

	if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
		return nil
	}
	return errors.New("ssh: signature did not verify")
}

func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
	return (*ecdsa.PublicKey)(k)
}

// skFields holds the additional fields present in U2F/FIDO2 signatures.
// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
type skFields struct {
	// Flags contains U2F/FIDO2 flags such as 'user present'
	Flags byte
	// Counter is a monotonic signature counter which can be
	// used to detect concurrent use of a private key, should
	// it be extracted from hardware.
	Counter uint32
}

type skECDSAPublicKey struct {
	// application is a URL-like string, typically "ssh:" for SSH.
	// see openssh/PROTOCOL.u2f for details.
	application string
	ecdsa.PublicKey
}

func (k *skECDSAPublicKey) Type() string {
	return KeyAlgoSKECDSA256
}

func (k *skECDSAPublicKey) nistID() string {
	return "nistp256"
}

func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
	var w struct {
		Curve       string
		KeyBytes    []byte
		Application string
		Rest        []byte `ssh:"rest"`
	}

	if err := Unmarshal(in, &w); err != nil {
		return nil, nil, err
	}

	key := new(skECDSAPublicKey)
	key.application = w.Application

	if w.Curve != "nistp256" {
		return nil, nil, errors.New("ssh: unsupported curve")
	}
	key.Curve = elliptic.P256()

	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
	if key.X == nil || key.Y == nil {
		return nil, nil, errors.New("ssh: invalid curve point")
	}

	return key, w.Rest, nil
}

func (k *skECDSAPublicKey) Marshal() []byte {
	// See RFC 5656, section 3.1.
	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
	w := struct {
		Name        string
		ID          string
		Key         []byte
		Application string
	}{
		k.Type(),
		k.nistID(),
		keyBytes,
		k.application,
	}

	return Marshal(&w)
}

func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
	if sig.Format != k.Type() {
		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
	}

	h := ecHash(k.Curve).New()
	h.Write([]byte(k.application))
	appDigest := h.Sum(nil)

	h.Reset()
	h.Write(data)
	dataDigest := h.Sum(nil)

	var ecSig struct {
		R *big.Int
		S *big.Int
	}
	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
		return err
	}

	var skf skFields
	if err := Unmarshal(sig.Rest, &skf); err != nil {
		return err
	}

	blob := struct {
		ApplicationDigest []byte `ssh:"rest"`
		Flags             byte
		Counter           uint32
		MessageDigest     []byte `ssh:"rest"`
	}{
		appDigest,
		skf.Flags,
		skf.Counter,
		dataDigest,
	}

	original := Marshal(blob)

	h.Reset()
	h.Write(original)
	digest := h.Sum(nil)

	if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
		return nil
	}
	return errors.New("ssh: signature did not verify")
}

type skEd25519PublicKey struct {
	// application is a URL-like string, typically "ssh:" for SSH.
	// see openssh/PROTOCOL.u2f for details.
	application string
	ed25519.PublicKey
}

func (k *skEd25519PublicKey) Type() string {
	return KeyAlgoSKED25519
}

func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
	var w struct {
		KeyBytes    []byte
		Application string
		Rest        []byte `ssh:"rest"`
	}

	if err := Unmarshal(in, &w); err != nil {
		return nil, nil, err
	}

	key := new(skEd25519PublicKey)
	key.application = w.Application
	key.PublicKey = ed25519.PublicKey(w.KeyBytes)

	return key, w.Rest, nil
}

func (k *skEd25519PublicKey) Marshal() []byte {
	w := struct {
		Name        string
		KeyBytes    []byte
		Application string
	}{
		KeyAlgoSKED25519,
		[]byte(k.PublicKey),
		k.application,
	}
	return Marshal(&w)
}

func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
	if sig.Format != k.Type() {
		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
	}

	h := sha256.New()
	h.Write([]byte(k.application))
	appDigest := h.Sum(nil)

	h.Reset()
	h.Write(data)
	dataDigest := h.Sum(nil)

	var edSig struct {
		Signature []byte `ssh:"rest"`
	}

	if err := Unmarshal(sig.Blob, &edSig); err != nil {
		return err
	}

	var skf skFields
	if err := Unmarshal(sig.Rest, &skf); err != nil {
		return err
	}

	blob := struct {
		ApplicationDigest []byte `ssh:"rest"`
		Flags             byte
		Counter           uint32
		MessageDigest     []byte `ssh:"rest"`
	}{
		appDigest,
		skf.Flags,
		skf.Counter,
		dataDigest,
	}

	original := Marshal(blob)

	edKey := (ed25519.PublicKey)(k.PublicKey)
	if ok := ed25519.Verify(edKey, original, edSig.Signature); !ok {
		return errors.New("ssh: signature did not verify")
	}

	return nil
}

// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
// *ecdsa.PrivateKey or any other crypto.Signer and returns a
// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
// P-521. DSA keys must use parameter size L1024N160.
func NewSignerFromKey(key interface{}) (Signer, error) {
	switch key := key.(type) {
	case crypto.Signer:
		return NewSignerFromSigner(key)
	case *dsa.PrivateKey:
		return newDSAPrivateKey(key)
	default:
		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
	}
}

func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
	if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
		return nil, err
	}

	return &dsaPrivateKey{key}, nil
}

type wrappedSigner struct {
	signer crypto.Signer
	pubKey PublicKey
}

// NewSignerFromSigner takes any crypto.Signer implementation and
// returns a corresponding Signer interface. This can be used, for
// example, with keys kept in hardware modules.
func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
	pubKey, err := NewPublicKey(signer.Public())
	if err != nil {
		return nil, err
	}

	return &wrappedSigner{signer, pubKey}, nil
}

func (s *wrappedSigner) PublicKey() PublicKey {
	return s.pubKey
}

func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
	return s.SignWithAlgorithm(rand, data, "")
}

func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
	var hashFunc crypto.Hash

	if _, ok := s.pubKey.(*rsaPublicKey); ok {
		// RSA keys support a few hash functions determined by the requested signature algorithm
		switch algorithm {
		case "", SigAlgoRSA:
			algorithm = SigAlgoRSA
			hashFunc = crypto.SHA1
		case SigAlgoRSASHA2256:
			hashFunc = crypto.SHA256
		case SigAlgoRSASHA2512:
			hashFunc = crypto.SHA512
		default:
			return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
		}
	} else {
		// The only supported algorithm for all other key types is the same as the type of the key
		if algorithm == "" {
			algorithm = s.pubKey.Type()
		} else if algorithm != s.pubKey.Type() {
			return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
		}

		switch key := s.pubKey.(type) {
		case *dsaPublicKey:
			hashFunc = crypto.SHA1
		case *ecdsaPublicKey:
			hashFunc = ecHash(key.Curve)
		case ed25519PublicKey:
		default:
			return nil, fmt.Errorf("ssh: unsupported key type %T", key)
		}
	}

	var digest []byte
	if hashFunc != 0 {
		h := hashFunc.New()
		h.Write(data)
		digest = h.Sum(nil)
	} else {
		digest = data
	}

	signature, err := s.signer.Sign(rand, digest, hashFunc)
	if err != nil {
		return nil, err
	}

	// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
	// for ECDSA and DSA, but that's not the encoding expected by SSH, so
	// re-encode.
	switch s.pubKey.(type) {
	case *ecdsaPublicKey, *dsaPublicKey:
		type asn1Signature struct {
			R, S *big.Int
		}
		asn1Sig := new(asn1Signature)
		_, err := asn1.Unmarshal(signature, asn1Sig)
		if err != nil {
			return nil, err
		}

		switch s.pubKey.(type) {
		case *ecdsaPublicKey:
			signature = Marshal(asn1Sig)

		case *dsaPublicKey:
			signature = make([]byte, 40)
			r := asn1Sig.R.Bytes()
			s := asn1Sig.S.Bytes()
			copy(signature[20-len(r):20], r)
			copy(signature[40-len(s):40], s)
		}
	}

	return &Signature{
		Format: algorithm,
		Blob:   signature,
	}, nil
}

// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
// or ed25519.PublicKey returns a corresponding PublicKey instance.
// ECDSA keys must use P-256, P-384 or P-521.
func NewPublicKey(key interface{}) (PublicKey, error) {
	switch key := key.(type) {
	case *rsa.PublicKey:
		return (*rsaPublicKey)(key), nil
	case *ecdsa.PublicKey:
		if !supportedEllipticCurve(key.Curve) {
			return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
		}
		return (*ecdsaPublicKey)(key), nil
	case *dsa.PublicKey:
		return (*dsaPublicKey)(key), nil
	case ed25519.PublicKey:
		return (ed25519PublicKey)(key), nil
	default:
		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
	}
}

// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
// the same keys as ParseRawPrivateKey. If the private key is encrypted, it
// will return a PassphraseMissingError.
func ParsePrivateKey(pemBytes []byte) (Signer, error) {
	key, err := ParseRawPrivateKey(pemBytes)
	if err != nil {
		return nil, err
	}

	return NewSignerFromKey(key)
}

// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
// key and passphrase. It supports the same keys as
// ParseRawPrivateKeyWithPassphrase.
func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
	key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
	if err != nil {
		return nil, err
	}

	return NewSignerFromKey(key)
}

// encryptedBlock tells whether a private key is
// encrypted by examining its Proc-Type header
// for a mention of ENCRYPTED
// according to RFC 1421 Section 4.6.1.1.
func encryptedBlock(block *pem.Block) bool {
	return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
}

// A PassphraseMissingError indicates that parsing this private key requires a
// passphrase. Use ParsePrivateKeyWithPassphrase.
type PassphraseMissingError struct {
	// PublicKey will be set if the private key format includes an unencrypted
	// public key along with the encrypted private key.
	PublicKey PublicKey
}

func (*PassphraseMissingError) Error() string {
	return "ssh: this private key is passphrase protected"
}

// ParseRawPrivateKey returns a private key from a PEM encoded private key. It
// supports RSA (PKCS#1), PKCS#8, DSA (OpenSSL), and ECDSA private keys. If the
// private key is encrypted, it will return a PassphraseMissingError.
func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
	block, _ := pem.Decode(pemBytes)
	if block == nil {
		return nil, errors.New("ssh: no key found")
	}

	if encryptedBlock(block) {
		return nil, &PassphraseMissingError{}
	}

	switch block.Type {
	case "RSA PRIVATE KEY":
		return x509.ParsePKCS1PrivateKey(block.Bytes)
	// RFC5208 - https://tools.ietf.org/html/rfc5208
	case "PRIVATE KEY":
		return x509.ParsePKCS8PrivateKey(block.Bytes)
	case "EC PRIVATE KEY":
		return x509.ParseECPrivateKey(block.Bytes)
	case "DSA PRIVATE KEY":
		return ParseDSAPrivateKey(block.Bytes)
	case "OPENSSH PRIVATE KEY":
		return parseOpenSSHPrivateKey(block.Bytes)
	default:
		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
	}
}

// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
// passphrase from a PEM encoded private key. If wrong passphrase, return
// x509.IncorrectPasswordError.
func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
	block, _ := pem.Decode(pemBytes)
	if block == nil {
		return nil, errors.New("ssh: no key found")
	}

	if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
		return nil, errors.New("ssh: not an encrypted key")
	}

	buf, err := x509.DecryptPEMBlock(block, passphrase)
	if err != nil {
		if err == x509.IncorrectPasswordError {
			return nil, err
		}
		return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
	}

	switch block.Type {
	case "RSA PRIVATE KEY":
		return x509.ParsePKCS1PrivateKey(buf)
	case "EC PRIVATE KEY":
		return x509.ParseECPrivateKey(buf)
	case "DSA PRIVATE KEY":
		return ParseDSAPrivateKey(buf)
	default:
		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
	}
}

// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
// specified by the OpenSSL DSA man page.
func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
	var k struct {
		Version int
		P       *big.Int
		Q       *big.Int
		G       *big.Int
		Pub     *big.Int
		Priv    *big.Int
	}
	rest, err := asn1.Unmarshal(der, &k)
	if err != nil {
		return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
	}
	if len(rest) > 0 {
		return nil, errors.New("ssh: garbage after DSA key")
	}

	return &dsa.PrivateKey{
		PublicKey: dsa.PublicKey{
			Parameters: dsa.Parameters{
				P: k.P,
				Q: k.Q,
				G: k.G,
			},
			Y: k.Pub,
		},
		X: k.Priv,
	}, nil
}

// Implemented based on the documentation at
// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key
func parseOpenSSHPrivateKey(key []byte) (crypto.PrivateKey, error) {
	const magic = "openssh-key-v1\x00"
	if len(key) < len(magic) || string(key[:len(magic)]) != magic {
		return nil, errors.New("ssh: invalid openssh private key format")
	}
	remaining := key[len(magic):]

	var w struct {
		CipherName   string
		KdfName      string
		KdfOpts      string
		NumKeys      uint32
		PubKey       []byte
		PrivKeyBlock []byte
	}

	if err := Unmarshal(remaining, &w); err != nil {
		return nil, err
	}

	if w.KdfName != "none" || w.CipherName != "none" {
		return nil, errors.New("ssh: cannot decode encrypted private keys")
	}

	pk1 := struct {
		Check1  uint32
		Check2  uint32
		Keytype string
		Rest    []byte `ssh:"rest"`
	}{}

	if err := Unmarshal(w.PrivKeyBlock, &pk1); err != nil {
		return nil, err
	}

	if pk1.Check1 != pk1.Check2 {
		return nil, errors.New("ssh: checkint mismatch")
	}

	// we only handle ed25519 and rsa keys currently
	switch pk1.Keytype {
	case KeyAlgoRSA:
		// https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
		key := struct {
			N       *big.Int
			E       *big.Int
			D       *big.Int
			Iqmp    *big.Int
			P       *big.Int
			Q       *big.Int
			Comment string
			Pad     []byte `ssh:"rest"`
		}{}

		if err := Unmarshal(pk1.Rest, &key); err != nil {
			return nil, err
		}

		for i, b := range key.Pad {
			if int(b) != i+1 {
				return nil, errors.New("ssh: padding not as expected")
			}
		}

		pk := &rsa.PrivateKey{
			PublicKey: rsa.PublicKey{
				N: key.N,
				E: int(key.E.Int64()),
			},
			D:      key.D,
			Primes: []*big.Int{key.P, key.Q},
		}

		if err := pk.Validate(); err != nil {
			return nil, err
		}

		pk.Precompute()

		return pk, nil
	case KeyAlgoED25519:
		key := struct {
			Pub     []byte
			Priv    []byte
			Comment string
			Pad     []byte `ssh:"rest"`
		}{}

		if err := Unmarshal(pk1.Rest, &key); err != nil {
			return nil, err
		}

		if len(key.Priv) != ed25519.PrivateKeySize {
			return nil, errors.New("ssh: private key unexpected length")
		}

		for i, b := range key.Pad {
			if int(b) != i+1 {
				return nil, errors.New("ssh: padding not as expected")
			}
		}

		pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
		copy(pk, key.Priv)
		return &pk, nil
	default:
		return nil, errors.New("ssh: unhandled key type")
	}
}

// FingerprintLegacyMD5 returns the user presentation of the key's
// fingerprint as described by RFC 4716 section 4.
func FingerprintLegacyMD5(pubKey PublicKey) string {
	md5sum := md5.Sum(pubKey.Marshal())
	hexarray := make([]string, len(md5sum))
	for i, c := range md5sum {
		hexarray[i] = hex.EncodeToString([]byte{c})
	}
	return strings.Join(hexarray, ":")
}

// FingerprintSHA256 returns the user presentation of the key's
// fingerprint as unpadded base64 encoded sha256 hash.
// This format was introduced from OpenSSH 6.8.
// https://www.openssh.com/txt/release-6.8
// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
func FingerprintSHA256(pubKey PublicKey) string {
	sha256sum := sha256.Sum256(pubKey.Marshal())
	hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
	return "SHA256:" + hash
}