~swaits/differential-evolution

3f5fdb3bbfbba54489986f116a65863a7b6d996d — swaits 17 years ago 7d8c006
tweaked default min/max and output in DE
commenting+tweaks to polyapprox.cpp
2 files changed, 26 insertions(+), 8 deletions(-)

M de.inl
M polyapprox.cpp
M de.inl => de.inl +4 -4
@@ 17,7 17,7 @@ template <unsigned int DIM, unsigned int POP>
const double DE::Engine<DIM,POP>::DEFAULTCROSSOVER = 1.0;

template <unsigned int DIM, unsigned int POP>
const double DE::Engine<DIM,POP>::DEFAULTRANGE= 10.0;
const double DE::Engine<DIM,POP>::DEFAULTRANGE= 100.0;

template <unsigned int DIM, unsigned int POP>
const double DE::Engine<DIM,POP>::BIGDOUBLE = 1.79e308; // close to max double


@@ 164,7 164,7 @@ inline bool DE::Engine<DIM,POP>::Solve(unsigned int maxgenerations)
		for (int candidate=0;candidate<POP && !success;candidate++)
		{
			Vector<DIM> trial;
			MakeTrial_randtobest1bin(candidate,trial);
			MakeTrial_randtobest1exp(candidate,trial);

			double trialfitness = CalculateError(trial,success);



@@ 193,10 193,10 @@ inline bool DE::Engine<DIM,POP>::Solve(unsigned int maxgenerations)
template <unsigned int DIM, unsigned int POP>
inline void DE::Engine<DIM,POP>::Dump(const double& fitness, DE::Vector<DIM>& individual) const
{
	printf(" fitness = %60.30f\n",fitness);
	printf(" fitness = %24.16f\n",fitness);
	for (unsigned int i=0;i<DIM;i++)
	{
		printf("   [%03d] = %60.30f\n",i,individual[i]);
		printf("   [%03d] = %24.16e\n",i,individual[i]);
	}
	printf("\n");
}

M polyapprox.cpp => polyapprox.cpp +22 -4
@@ 4,19 4,19 @@
#include "de.h"

// the order of the polynomial (actually the number of coefficients, i.e. 1 = constant, 2 = line, etc.)
#define NUM_COEFFICIENTS 3
#define NUM_COEFFICIENTS 6

// the function we're searching for
double TargetFunction(double x)
{
	//return 1.0 / (1.0 + exp(-4.9*x));               // Ken Stanley's NEAT activation
	return 1.0 / (1.0 + exp(-4.9*x));               // Ken Stanley's NEAT activation
	//return (1.0 / (1.0 + exp(-4.9*x)) - 0.5) * 2.0; // " " (signed version)
	//return (1.0 / (1.0 + exp(-x)) - 0.5) * 2.0;     // signed sigmoid
	//return exp(-x*x);                               // gaussian
	//return tanh(x);                                 // tanh
	//return (2.0/(1.0+exp(-x))-1.0);                 // tanh approximation
	//return (x<0.0 ? -1.0 : 1.0) * sqrt(abs(x));     // signed root
	return sin(x);                                  // sin
	//return sin(x);                                  // sin
}




@@ 45,7 45,7 @@ class PolySearch: public DE::Engine<NUM_COEFFICIENTS>
			unsigned int test_count = 0;

			// accumulate squared error
			for ( double i=-1.5;i<=1.5;i+=0.01 )
			for ( double i=-7.9287;i<=7.9287;i+=0.001 )
			{
				// test
				double test   = CalculatePolynomial(i,NUM_COEFFICIENTS,testcase);


@@ 78,6 78,24 @@ class PolySearch: public DE::Engine<NUM_COEFFICIENTS>
int main()
{
	PolySearch de;

	// setup, adjust from default range
	de.SetRange(-0.1,0.1);

	// create new population with adjusted range
	de.Reset();

	// run the DE
	de.Solve(1000);

	// output winner in polynomial form
	printf("Best Polynomial Found\n=====================\ny =");
	for (int i=0;i<NUM_COEFFICIENTS-2;++i)
	{
		printf(" %0.16f*x^%d +",de.GetBest()[i],NUM_COEFFICIENTS-1-i);
	}
	printf(" %0.16f*x + %0.16f\n",de.GetBest()[NUM_COEFFICIENTS-2],de.GetBest()[NUM_COEFFICIENTS-1]);

	// done
	return 0;
}