~statianzo/sevenlangs

sevenlangs/haskell/DayOne.hs -rw-r--r-- 5.2 KiB
2fcd4511Jason Staten day one logic style 7 months ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
module DayOne where
import Control.Monad (guard)

-- How many different ways can you find to write allEven?

allEven :: [Integer] -> [Integer]
allEven [] = []
allEven (h:t) = if even h then h:allEven t else allEven t

-- >>> allEven [1, 2, 3, 4, 5, 6]
-- [2,4,6]
--

allEven2 :: [Integer] -> [Integer]
allEven2 xs = [x | x <- xs, even x]

-- >>> allEven2 [1, 2, 3, 4, 5, 6]
-- [2,4,6]
--

allEven3 :: [Integer] -> [Integer]
allEven3 = filter even

-- >>> allEven3 [1, 2, 3, 4, 5, 6]
-- [2,4,6]
--


-- Write a function that takes a list and returns the same list in reverse.

backwards :: [a] -> [a]
backwards = reverse

-- >>> backwards [1, 2, 3, 4]
-- [4,3,2,1]
--

backwards2 :: [a] -> [a]
backwards2 [] = []
backwards2 (x:xs) = backwards2 xs ++ [x]

-- >>> backwards2 [1, 2, 3, 4]
-- [4,3,2,1]
--

-- Write a function that builds two-tuples with all possible combinations of
-- two of the colors black, white, blue, yellow, and red. Note that you should
-- include only one of(black, blue)and(blue, black).

data Color = Black
             | White
             | Blue
             | Yellow
             | Red
             | Green
             deriving (Enum, Ord, Eq, Show)

-- https://stackoverflow.com/questions/4299319/getting-a-list-of-all-possible-data-type-values-in-haskell
allColors :: (Enum a) => [a]
allColors = [toEnum 0 ..]

pairs :: [(Color, Color)]
pairs = [(a, b) | a <- allColors, b <- allColors, a < b]

-- >>> pairs
-- [(Black,White),(Black,Blue),(Black,Yellow),(Black,Red),(White,Blue),(White,Yellow),(White,Red),(Blue,Yellow),(Blue,Red),(Yellow,Red)]
--

-- Write a list comprehension to build a childhood multiplication table. The
-- table would be a list of three-tuples where the first two are integers from
-- 1–12 and the third is the product of the first two.

multiples :: [(Int, Int, Int)]
multiples = [(a, b, a * b) | a <- [0..12], b <- [0..12]]

-- >>> multiples
-- [(0,0,0),(0,1,0),(0,2,0),(0,3,0),(0,4,0),(0,5,0),(0,6,0),(0,7,0),(0,8,0),(0,9,0),(0,10,0),(0,11,0),(0,12,0),(1,0,0),(1,1,1),(1,2,2),(1,3,3),(1,4,4),(1,5,5),(1,6,6),(1,7,7),(1,8,8),(1,9,9),(1,10,10),(1,11,11),(1,12,12),(2,0,0),(2,1,2),(2,2,4),(2,3,6),(2,4,8),(2,5,10),(2,6,12),(2,7,14),(2,8,16),(2,9,18),(2,10,20),(2,11,22),(2,12,24),(3,0,0),(3,1,3),(3,2,6),(3,3,9),(3,4,12),(3,5,15),(3,6,18),(3,7,21),(3,8,24),(3,9,27),(3,10,30),(3,11,33),(3,12,36),(4,0,0),(4,1,4),(4,2,8),(4,3,12),(4,4,16),(4,5,20),(4,6,24),(4,7,28),(4,8,32),(4,9,36),(4,10,40),(4,11,44),(4,12,48),(5,0,0),(5,1,5),(5,2,10),(5,3,15),(5,4,20),(5,5,25),(5,6,30),(5,7,35),(5,8,40),(5,9,45),(5,10,50),(5,11,55),(5,12,60),(6,0,0),(6,1,6),(6,2,12),(6,3,18),(6,4,24),(6,5,30),(6,6,36),(6,7,42),(6,8,48),(6,9,54),(6,10,60),(6,11,66),(6,12,72),(7,0,0),(7,1,7),(7,2,14),(7,3,21),(7,4,28),(7,5,35),(7,6,42),(7,7,49),(7,8,56),(7,9,63),(7,10,70),(7,11,77),(7,12,84),(8,0,0),(8,1,8),(8,2,16),(8,3,24),(8,4,32),(8,5,40),(8,6,48),(8,7,56),(8,8,64),(8,9,72),(8,10,80),(8,11,88),(8,12,96),(9,0,0),(9,1,9),(9,2,18),(9,3,27),(9,4,36),(9,5,45),(9,6,54),(9,7,63),(9,8,72),(9,9,81),(9,10,90),(9,11,99),(9,12,108),(10,0,0),(10,1,10),(10,2,20),(10,3,30),(10,4,40),(10,5,50),(10,6,60),(10,7,70),(10,8,80),(10,9,90),(10,10,100),(10,11,110),(10,12,120),(11,0,0),(11,1,11),(11,2,22),(11,3,33),(11,4,44),(11,5,55),(11,6,66),(11,7,77),(11,8,88),(11,9,99),(11,10,110),(11,11,121),(11,12,132),(12,0,0),(12,1,12),(12,2,24),(12,3,36),(12,4,48),(12,5,60),(12,6,72),(12,7,84),(12,8,96),(12,9,108),(12,10,120),(12,11,132),(12,12,144)]
--

coloring (al, mi, ga, tn, fl) =
  mi /= tn 
  && mi /= al
  && al /= tn
  && al /= mi
  && al /= ga
  && al /= fl
  && ga /= fl
  && ga /= tn

mapcolors = [Red, Green, Blue]

maplayouts = [(al, mi, ga, tn, fl) |
              al <- mapcolors,
              mi <- mapcolors,
              ga <- mapcolors,
              tn <- mapcolors,
              fl <- mapcolors,
              coloring (al, mi, ga, tn, fl)]

-- >>> maplayouts
-- [(Red,Green,Green,Blue,Blue),(Red,Blue,Blue,Green,Green),(Green,Red,Red,Blue,Blue),(Green,Blue,Blue,Red,Red),(Blue,Red,Red,Green,Green),(Blue,Green,Green,Red,Red)]
--

-- Haskell Wiki: Logic programming
-- https://wiki.haskell.org/Logic_programming_example


data USMap = USMap {
  alabama :: Color,
  florida :: Color,
  georgia :: Color,
  mississippi :: Color,
  tennessee :: Color
} deriving Show

maplayouts2 :: [USMap]
maplayouts2 = do
  al <- [Red, Blue, Green]
  fl <- [Red, Blue, Green]
  ga <- [Red, Blue, Green]
  ms <- [Red, Blue, Green]
  tn <- [Red, Blue, Green]

  guard $ ms /= tn
  guard $ ms /= al
  guard $ al /= tn
  guard $ al /= ms
  guard $ al /= ga
  guard $ al /= fl
  guard $ ga /= fl
  guard $ ga /= tn

  return $ USMap {
    alabama = al,
    florida = fl,
    georgia = ga,
    mississippi = ms,
    tennessee = tn
  }

-- >>> maplayouts2
-- [USMap {alabama = Red, florida = Blue, georgia = Green, mississippi = Green, tennessee = Blue},USMap {alabama = Red, florida = Green, georgia = Blue, mississippi = Blue, tennessee = Green},USMap {alabama = Blue, florida = Red, georgia = Green, mississippi = Green, tennessee = Red},USMap {alabama = Blue, florida = Green, georgia = Red, mississippi = Red, tennessee = Green},USMap {alabama = Green, florida = Red, georgia = Blue, mississippi = Blue, tennessee = Red},USMap {alabama = Green, florida = Blue, georgia = Red, mississippi = Red, tennessee = Blue}]
--