~sircmpwn/xrgears

ref: bed4c8b5a430f86f710ca40894f7d72f741b2ec9 xrgears/examples/xrcubemap/xrcubemap.cpp -rw-r--r-- 18.8 KiB
bed4c8b5 — Lubosz Sarnecki settings: add option to disable text overlay. 4 years ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
* Vulkan Example - Cube map texture loading and displaying
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>

#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <gli/gli.hpp>

#include <vulkan/vulkan.h>
#include "system/vikApplication.hpp"
#include "render/vikModel.hpp"
#include "render/vikTexture.hpp"
#include "scene/vikCameraArcBall.hpp"

#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false

class XRCubeMap : public vik::Application
{
public:
	bool displaySkybox = true;

  vik::TextureCubeMap cubeMap;

	struct {
		VkPipelineVertexInputStateCreateInfo inputState;
		std::vector<VkVertexInputBindingDescription> bindingDescriptions;
		std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
	} vertices;

	// Vertex layout for the models
  vik::VertexLayout vertexLayout = vik::VertexLayout({
    vik::VERTEX_COMPONENT_POSITION,
    vik::VERTEX_COMPONENT_NORMAL,
    vik::VERTEX_COMPONENT_UV,
	});

	struct Meshes {
    vik::Model skybox;
    std::vector<vik::Model> objects;
		uint32_t objectIndex = 0;
	} models;

	struct {
    vik::Buffer object;
    vik::Buffer skybox;
	} uniformBuffers;

	struct UBOVS {
		glm::mat4 projection;
		glm::mat4 model;
		float lodBias = 0.0f;
	} uboVS;

	struct {
		VkPipeline skybox;
		VkPipeline reflect;
	} pipelines;

	struct {
		VkDescriptorSet object;
		VkDescriptorSet skybox;
	} descriptorSets;

	VkPipelineLayout pipelineLayout;
	VkDescriptorSetLayout descriptorSetLayout;

  XRCubeMap(int argc, char *argv[]) : vik::Application(argc, argv) {
    settings.enable_text_overlay = true;
    name = "Cube map viewer";
    camera = new vik::CameraArcBall();
    ((vik::CameraArcBall*)camera)->zoom = -4.0f;
    camera->rotation_speed = 0.25f;
    camera->rotation = { -7.25f, -120.0f, 0.0f };
    camera->set_view_updated_cb([this]() { viewUpdated = true; });
	}

  ~XRCubeMap()
	{
		// Clean up used Vulkan resources 
		// Note : Inherited destructor cleans up resources stored in base class

		// Clean up texture resources
    vkDestroyImageView(renderer->device, cubeMap.view, nullptr);
    vkDestroyImage(renderer->device, cubeMap.image, nullptr);
    vkDestroySampler(renderer->device, cubeMap.sampler, nullptr);
    vkFreeMemory(renderer->device, cubeMap.deviceMemory, nullptr);

    vkDestroyPipeline(renderer->device, pipelines.skybox, nullptr);
    vkDestroyPipeline(renderer->device, pipelines.reflect, nullptr);

    vkDestroyPipelineLayout(renderer->device, pipelineLayout, nullptr);
    vkDestroyDescriptorSetLayout(renderer->device, descriptorSetLayout, nullptr);

		for (auto& model : models.objects) {
			model.destroy();
		}
		models.skybox.destroy();

		uniformBuffers.object.destroy();
		uniformBuffers.skybox.destroy();
	}

	void loadTextures()
	{
		// Vulkan core supports three different compressed texture formats
		// As the support differs between implemementations we need to check device features and select a proper format and file
		std::string filename;
		VkFormat format;
    if (renderer->deviceFeatures.textureCompressionBC) {
			filename = "cubemap_yokohama_bc3_unorm.ktx";
			format = VK_FORMAT_BC2_UNORM_BLOCK;
		}
    else if (renderer->deviceFeatures.textureCompressionASTC_LDR) {
			filename = "cubemap_yokohama_astc_8x8_unorm.ktx";
			format = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
		}
    else if (renderer->deviceFeatures.textureCompressionETC2) {
			filename = "cubemap_yokohama_etc2_unorm.ktx";
			format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
		}
		else {
      vik_log_f("Device does not support any compressed texture format!");
		}

    cubeMap.loadFromFile(vik::Assets::getTexturePath() + filename, format, renderer->vksDevice, renderer->queue);
	}

	void reBuildCommandBuffers()
	{
    if (!renderer->check_command_buffers())
		{
      renderer->destroy_command_buffers();
      renderer->allocate_command_buffers(window->get_swap_chain()->image_count);
		}
		buildCommandBuffers();
	}

	void buildCommandBuffers()
	{
    VkCommandBufferBeginInfo cmdBufInfo = vik::initializers::commandBufferBeginInfo();

		VkClearValue clearValues[2];
    clearValues[0].color = renderer->defaultClearColor;
		clearValues[1].depthStencil = { 1.0f, 0 };

    VkRenderPassBeginInfo renderPassBeginInfo = vik::initializers::renderPassBeginInfo();
    renderPassBeginInfo.renderPass = renderer->render_pass;
		renderPassBeginInfo.renderArea.offset.x = 0;
		renderPassBeginInfo.renderArea.offset.y = 0;
    renderPassBeginInfo.renderArea.extent.width = renderer->width;
    renderPassBeginInfo.renderArea.extent.height = renderer->height;
		renderPassBeginInfo.clearValueCount = 2;
		renderPassBeginInfo.pClearValues = clearValues;

    for (int32_t i = 0; i < renderer->cmd_buffers.size(); ++i)
		{
			// Set target frame buffer
      renderPassBeginInfo.framebuffer = renderer->frame_buffers[i];

      vik_log_check(vkBeginCommandBuffer(renderer->cmd_buffers[i], &cmdBufInfo));

      vkCmdBeginRenderPass(renderer->cmd_buffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);

      VkViewport viewport = vik::initializers::viewport((float)renderer->width,	(float)renderer->height, 0.0f, 1.0f);
      vkCmdSetViewport(renderer->cmd_buffers[i], 0, 1, &viewport);

      VkRect2D scissor = vik::initializers::rect2D(renderer->width,	renderer->height,	0, 0);
      vkCmdSetScissor(renderer->cmd_buffers[i], 0, 1, &scissor);

			VkDeviceSize offsets[1] = { 0 };

			// Skybox
			if (displaySkybox)
			{
        vkCmdBindDescriptorSets(renderer->cmd_buffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL);
        vkCmdBindVertexBuffers(renderer->cmd_buffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.skybox.vertices.buffer, offsets);
        vkCmdBindIndexBuffer(renderer->cmd_buffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
        vkCmdBindPipeline(renderer->cmd_buffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
        vkCmdDrawIndexed(renderer->cmd_buffers[i], models.skybox.indexCount, 1, 0, 0, 0);
			}

			// 3D object
      vkCmdBindDescriptorSets(renderer->cmd_buffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL);
      vkCmdBindVertexBuffers(renderer->cmd_buffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.objects[models.objectIndex].vertices.buffer, offsets);
      vkCmdBindIndexBuffer(renderer->cmd_buffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32);
      vkCmdBindPipeline(renderer->cmd_buffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect);
      vkCmdDrawIndexed(renderer->cmd_buffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);

      vkCmdEndRenderPass(renderer->cmd_buffers[i]);

      vik_log_check(vkEndCommandBuffer(renderer->cmd_buffers[i]));
		}
	}

	void loadMeshes()
	{
		// Skybox
    models.skybox.loadFromFile(vik::Assets::getAssetPath() + "models/cube.obj", vertexLayout, 0.05f, renderer->vksDevice, renderer->queue);
		// Objects
		std::vector<std::string> filenames = { "sphere.obj", "teapot.dae", "torusknot.obj" };
		for (auto file : filenames) {
      vik::Model model;
      model.loadFromFile(vik::Assets::getAssetPath() + "models/" + file, vertexLayout, 0.05f, renderer->vksDevice, renderer->queue);
			models.objects.push_back(model);
		}
	}

	void setupVertexDescriptions()
	{
		// Binding description
		vertices.bindingDescriptions.resize(1);
		vertices.bindingDescriptions[0] =
      vik::initializers::vertexInputBindingDescription(
				VERTEX_BUFFER_BIND_ID,
				vertexLayout.stride(),
				VK_VERTEX_INPUT_RATE_VERTEX);

		// Attribute descriptions
		// Describes memory layout and shader positions
		vertices.attributeDescriptions.resize(3);
		// Location 0 : Position
		vertices.attributeDescriptions[0] =
      vik::initializers::vertexInputAttributeDescription(
				VERTEX_BUFFER_BIND_ID,
				0,
				VK_FORMAT_R32G32B32_SFLOAT,
				0);
		// Location 1 : Normal
		vertices.attributeDescriptions[1] =
      vik::initializers::vertexInputAttributeDescription(
				VERTEX_BUFFER_BIND_ID,
				1,
				VK_FORMAT_R32G32B32_SFLOAT,
				sizeof(float) * 3);
		// Location 2 : Texture coordinates
		vertices.attributeDescriptions[2] =
      vik::initializers::vertexInputAttributeDescription(
				VERTEX_BUFFER_BIND_ID,
				2,
				VK_FORMAT_R32G32_SFLOAT,
				sizeof(float) * 5);

    vertices.inputState = vik::initializers::pipelineVertexInputStateCreateInfo();
		vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
		vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
		vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
		vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
	}

	void setupDescriptorPool()
	{
		std::vector<VkDescriptorPoolSize> poolSizes =
		{
      vik::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
      vik::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
		};

		VkDescriptorPoolCreateInfo descriptorPoolInfo = 
      vik::initializers::descriptorPoolCreateInfo(
				poolSizes.size(),
				poolSizes.data(),
				2);

    vik_log_check(vkCreateDescriptorPool(renderer->device, &descriptorPoolInfo, nullptr, &renderer->descriptorPool));
	}

	void setupDescriptorSetLayout()
	{
		std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = 
		{
			// Binding 0 : Vertex shader uniform buffer
      vik::initializers::descriptorSetLayoutBinding(
				VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 
				VK_SHADER_STAGE_VERTEX_BIT, 
				0),
			// Binding 1 : Fragment shader image sampler
      vik::initializers::descriptorSetLayoutBinding(
				VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 
				VK_SHADER_STAGE_FRAGMENT_BIT, 
				1)
		};

		VkDescriptorSetLayoutCreateInfo descriptorLayout = 
      vik::initializers::descriptorSetLayoutCreateInfo(
				setLayoutBindings.data(),
				setLayoutBindings.size());

    vik_log_check(vkCreateDescriptorSetLayout(renderer->device, &descriptorLayout, nullptr, &descriptorSetLayout));

		VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
      vik::initializers::pipelineLayoutCreateInfo(
				&descriptorSetLayout,
				1);

    vik_log_check(vkCreatePipelineLayout(renderer->device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
	}

	void setupDescriptorSets()
	{
		// Image descriptor for the cube map texture
		VkDescriptorImageInfo textureDescriptor =
      vik::initializers::descriptorImageInfo(
				cubeMap.sampler,
				cubeMap.view,
				cubeMap.imageLayout);

		VkDescriptorSetAllocateInfo allocInfo =
      vik::initializers::descriptorSetAllocateInfo(
        renderer->descriptorPool,
				&descriptorSetLayout,
				1);

		// 3D object descriptor set
    vik_log_check(vkAllocateDescriptorSets(renderer->device, &allocInfo, &descriptorSets.object));

		std::vector<VkWriteDescriptorSet> writeDescriptorSets =
		{
			// Binding 0 : Vertex shader uniform buffer
      vik::initializers::writeDescriptorSet(
				descriptorSets.object, 
				VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 
				0, 
				&uniformBuffers.object.descriptor),
			// Binding 1 : Fragment shader cubemap sampler
      vik::initializers::writeDescriptorSet(
				descriptorSets.object, 
				VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 
				1, 
				&textureDescriptor)
		};
    vkUpdateDescriptorSets(renderer->device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);

		// Sky box descriptor set
    vik_log_check(vkAllocateDescriptorSets(renderer->device, &allocInfo, &descriptorSets.skybox));

		writeDescriptorSets =
		{
			// Binding 0 : Vertex shader uniform buffer
      vik::initializers::writeDescriptorSet(
				descriptorSets.skybox,
				VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
				0,
				&uniformBuffers.skybox.descriptor),
			// Binding 1 : Fragment shader cubemap sampler
      vik::initializers::writeDescriptorSet(
				descriptorSets.skybox,
				VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
				1,
				&textureDescriptor)
		};
    vkUpdateDescriptorSets(renderer->device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
	}

	void preparePipelines()
	{
		VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
      vik::initializers::pipelineInputAssemblyStateCreateInfo(
				VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
				0,
				VK_FALSE);

		VkPipelineRasterizationStateCreateInfo rasterizationState =
      vik::initializers::pipelineRasterizationStateCreateInfo(
				VK_POLYGON_MODE_FILL,
				VK_CULL_MODE_BACK_BIT,
				VK_FRONT_FACE_COUNTER_CLOCKWISE,
				0);

		VkPipelineColorBlendAttachmentState blendAttachmentState =
      vik::initializers::pipelineColorBlendAttachmentState(
				0xf,
				VK_FALSE);

		VkPipelineColorBlendStateCreateInfo colorBlendState =
      vik::initializers::pipelineColorBlendStateCreateInfo(
				1, 
				&blendAttachmentState);

		VkPipelineDepthStencilStateCreateInfo depthStencilState =
      vik::initializers::pipelineDepthStencilStateCreateInfo(
				VK_FALSE,
				VK_FALSE,
				VK_COMPARE_OP_LESS_OR_EQUAL);

		VkPipelineViewportStateCreateInfo viewportState =
      vik::initializers::pipelineViewportStateCreateInfo(1, 1, 0);

		VkPipelineMultisampleStateCreateInfo multisampleState =
      vik::initializers::pipelineMultisampleStateCreateInfo(
				VK_SAMPLE_COUNT_1_BIT,
				0);

		std::vector<VkDynamicState> dynamicStateEnables = {
			VK_DYNAMIC_STATE_VIEWPORT,
			VK_DYNAMIC_STATE_SCISSOR
		};
		VkPipelineDynamicStateCreateInfo dynamicState =
      vik::initializers::pipelineDynamicStateCreateInfo(
				dynamicStateEnables.data(),
				dynamicStateEnables.size(),
				0);

		// Skybox pipeline (background cube)
		std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;

    shaderStages[0] = vik::Shader::load(renderer->device, "cubemap/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
    shaderStages[1] = vik::Shader::load(renderer->device, "cubemap/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);

		VkGraphicsPipelineCreateInfo pipelineCreateInfo =
      vik::initializers::pipelineCreateInfo(
				pipelineLayout,
        renderer->render_pass,
				0);

		pipelineCreateInfo.pVertexInputState = &vertices.inputState;
		pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
		pipelineCreateInfo.pRasterizationState = &rasterizationState;
		pipelineCreateInfo.pColorBlendState = &colorBlendState;
		pipelineCreateInfo.pMultisampleState = &multisampleState;
		pipelineCreateInfo.pViewportState = &viewportState;
		pipelineCreateInfo.pDepthStencilState = &depthStencilState;
		pipelineCreateInfo.pDynamicState = &dynamicState;
		pipelineCreateInfo.stageCount = shaderStages.size();
		pipelineCreateInfo.pStages = shaderStages.data();

    vik_log_check(vkCreateGraphicsPipelines(renderer->device, renderer->pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox));

		// Cube map reflect pipeline
    shaderStages[0] = vik::Shader::load(renderer->device, "cubemap/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
    shaderStages[1] = vik::Shader::load(renderer->device, "cubemap/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
		// Enable depth test and write
		depthStencilState.depthWriteEnable = VK_TRUE;
		depthStencilState.depthTestEnable = VK_TRUE;
		// Flip cull mode
		rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
    vik_log_check(vkCreateGraphicsPipelines(renderer->device, renderer->pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.reflect));
	}

	// Prepare and initialize uniform buffer containing shader uniforms
	void prepareUniformBuffers()
	{
		// Objact vertex shader uniform buffer
    vik_log_check(renderer->vksDevice->createBuffer(
			VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
			VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
			&uniformBuffers.object,
			sizeof(uboVS)));

		// Skybox vertex shader uniform buffer
    vik_log_check(renderer->vksDevice->createBuffer(
			VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
			VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
			&uniformBuffers.skybox,
			sizeof(uboVS)));

		// Map persistent
    vik_log_check(uniformBuffers.object.map());
    vik_log_check(uniformBuffers.skybox.map());

		updateUniformBuffers();
	}

  void updateUniformBuffers() {
    // object
    uboVS.projection = camera->get_projection_matrix();
    uboVS.model = camera->get_view_matrix();
		memcpy(uniformBuffers.object.mapped, &uboVS, sizeof(uboVS));

		// Skybox
    uboVS.projection = camera->get_projection_matrix();
    uboVS.model = camera->get_rotation_matrix();
		memcpy(uniformBuffers.skybox.mapped, &uboVS, sizeof(uboVS));
	}

	void draw()
	{

    VkSubmitInfo submit_info = renderer->init_render_submit_info();

    submit_info.commandBufferCount = 1;
    submit_info.pCommandBuffers = &renderer->cmd_buffers[renderer->currentBuffer];
    vik_log_check(vkQueueSubmit(renderer->queue, 1, &submit_info, VK_NULL_HANDLE));

	}

  void init()
	{
    vik::Application::init();
		loadTextures();
		loadMeshes();
		setupVertexDescriptions();

    camera->set_perspective(60.0f,
                            (float)renderer->width / (float)renderer->height,
                            0.001f, 256.0f);

		prepareUniformBuffers();
		setupDescriptorSetLayout();
		preparePipelines();
		setupDescriptorPool();
		setupDescriptorSets();
		buildCommandBuffers();
	}

	virtual void render()
	{
		draw();
	}

  virtual void view_changed_cb()
	{
		updateUniformBuffers();
	}

	void toggleSkyBox()
	{
		displaySkybox = !displaySkybox;
		reBuildCommandBuffers();
	}

	void toggleObject()
	{
		models.objectIndex++;
		if (models.objectIndex >= static_cast<uint32_t>(models.objects.size()))
		{
			models.objectIndex = 0;
		}
		reBuildCommandBuffers();
	}

	void changeLodBias(float delta)
	{
		uboVS.lodBias += delta;
		if (uboVS.lodBias < 0.0f)
		{
			uboVS.lodBias = 0.0f;
		}
		if (uboVS.lodBias > cubeMap.mipLevels)
		{
			uboVS.lodBias = cubeMap.mipLevels;
		}
		updateUniformBuffers();
    //TODO
    //renderer->updateTextOverlay();
	}

  void key_pressed(vik::Input::Key key) {
    switch (key) {
      case vik::Input::Key::S:
        toggleSkyBox();
        break;
      case vik::Input::Key::SPACE:
        toggleObject();
        break;
      case vik::Input::Key::KPPLUS:
        changeLodBias(0.1f);
        break;
      case vik::Input::Key::KPMINUS:
        changeLodBias(-0.1f);
        break;
    }
  }

  virtual void update_text_overlay(vik::TextOverlay *overlay) {
		std::stringstream ss;
		ss << std::setprecision(2) << std::fixed << uboVS.lodBias;
    overlay->addText("Press \"s\" to toggle skybox", 5.0f, 85.0f, vik::TextOverlay::alignLeft);
    overlay->addText("Press \"space\" to toggle object", 5.0f, 100.0f, vik::TextOverlay::alignLeft);
    overlay->addText("LOD bias: " + ss.str() + " (numpad +/- to change)", 5.0f, 115.0f, vik::TextOverlay::alignLeft);
	}
};

int main(int argc, char *argv[]) {
  XRCubeMap app(argc, argv);
  app.init();
  app.loop();
  return 0;
}