~samiam/MaraDNS

ref: 3.5.0002 MaraDNS/rng/rng-alg-fst.c -rw-r--r-- 10.2 KiB
db09084f — Sam Trenholme MaraDNS release 3.5.0002 7 months ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/* Copyright (c) 2002-2005 Sam Trenholme
 *
 * TERMS
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This software is provided 'as is' with no guarantees of correctness or
 * fitness for purpose.
 *
 * Note that this copyrighted code is based on public domain code
 */

/**
 * rng-alg-fst.c
 *
 * @version 3.0 (December 2000)
 *
 * Note: This is a Rijndael variant.
 *
 * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
 * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
 * @author Paulo Barreto <paulo.barreto@terra.com.br>
 *
 * The original code was hereby placed in the public domain.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>

#include "rng-alg-fst.h"
#include "rng-32bit-tables.h"

static const u32 rcon[] = {
        0x01000000, 0x02000000, 0x04000000, 0x08000000,
        0x10000000, 0x20000000, 0x40000000, 0x80000000,
        0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
};

/* The scramble chart and the scrambled tables; this is my code that
 * makes this AES variant only vulnerable to cache sniffing attacks
 * during key setup */

unsigned char Sc[256];
u32 STe0[256];
u32 STe1[256];
u32 STe2[256];
u32 STe3[256];
u32 STe4[256];

#define SWAP(x) (_lrotl(x, 8) & 0x00ff00ff | _lrotr(x, 8) & 0xff00ff00)

#ifdef _MSC_VER
#define GETU32(p) SWAP(*((u32 *)(p)))
#define PUTU32(ct, st) { *((u32 *)(ct)) = SWAP((st)); }
#else
#define GETU32(pt) (((u32)(pt)[0] << 24) ^ ((u32)(pt)[1] << 16) ^ ((u32)(pt)[2] <<  8) ^ ((u32)(pt)[3]))
#define PUTU32(ct, st) { (ct)[0] = (u8)((st) >> 24); (ct)[1] = (u8)((st) >> 16); (ct)[2] = (u8)((st) >>  8); (ct)[3] = (u8)(st); }
#endif

/**
 * Expand the cipher key into the encryption key schedule.
 *
 * @return      the number of rounds for the given cipher key size.
 */
/* This code may be vulnerable to cache sniffing attacks */
int rngKeySetupEnc(u32 rk[/*4*(Nr + 1)*/], const u8 cipherKey[], int keyBits) {
        int i = 0;
        unsigned char rbytes[512];
        unsigned char u8_swap;
        u32 u32_swap;
        u32 temp;
        u32 *rks;

        rks = rk;

        rk[0] = GETU32(cipherKey     );
        rk[1] = GETU32(cipherKey +  4);
        rk[2] = GETU32(cipherKey +  8);
        rk[3] = GETU32(cipherKey + 12);
        if (keyBits == 128) {
                for (;;) {
                        temp  = rk[3];
                        rk[4] = rk[0] ^
                                (Te4[(temp >> 16) & 0xff] & 0xff000000) ^
                                (Te4[(temp >>  8) & 0xff] & 0x00ff0000) ^
                                (Te4[(temp      ) & 0xff] & 0x0000ff00) ^
                                (Te4[(temp >> 24)       ] & 0x000000ff) ^
                                rcon[i];
                        rk[5] = rk[1] ^ rk[4];
                        rk[6] = rk[2] ^ rk[5];
                        rk[7] = rk[3] ^ rk[6];
                        if (++i == 10) {
                                break;
                        }
                        rk += 4;
                }
        }
        else {
                printf("Fatal error during rng setup\n");
                exit(1);
        }
        /* Now that the key is set up, set up the scramble tables */
        for(i = 0; i < 256; i++) {
                Sc[i] = i;
                STe0[i] = Te0[i];
                STe1[i] = Te1[i];
                STe2[i] = Te2[i];
                STe3[i] = Te3[i];
                STe4[i] = Te4[i];
        }
        /* Scramble the Sc and corresponding STe tables */
        /* Create a table where each set of 16 bytes is different */
        for(i = 0; i < 512 ; i++) {
                rbytes[i] = (i * 7) % 256;
                if(i > 255) { rbytes[i] ^= 0xff; }
        }

        /* Now, we can make that table a random table by using that table
           as plaintext */
        for(i = 0; i< 512 ; i+=16) {
                int q;
                rngEncrypt(rks,10,rbytes + i,rbytes + i);
                for(q = 0; q < 16; q++) {
                        unsigned char z,x,y;
                        z = rbytes[i + q];

                        /* Swap the two; no we're not doing hacks like
                           a = a + b; b = a - b; a = a - b; */

                        u8_swap = Sc[z];
                        Sc[z] = Sc[1];
                        Sc[1] = u8_swap;

                        /* Prepare for the corresponding encrypt table swap */
                        x = Sc[z];
                        y = Sc[1];

                        /* Do the corresponding swap for the encrypt tables */
                        u32_swap = STe0[x];
                        STe0[x] = STe0[y];
                        STe0[y] = u32_swap;

                        u32_swap = STe1[x];
                        STe1[x] = STe1[y];
                        STe1[y] = u32_swap;

                        u32_swap = STe2[x];
                        STe2[x] = STe2[y];
                        STe2[y] = u32_swap;

                        u32_swap = STe3[x];
                        STe3[x] = STe3[y];
                        STe3[y] = u32_swap;

                        u32_swap = STe4[x];
                        STe4[x] = STe4[y];
                        STe4[y] = u32_swap;
                }

        }

        return 10;
}

void rngEncrypt(const u32 rk[/*4*(Nr + 1)*/], int Nr, const u8 pt[16], u8 ct[16]) {
        u32 s0, s1, s2, s3, t0, t1, t2, t3;
    int r;

        /*
         * map byte array block to cipher state
         * and add initial round key:
         */
        s0 = GETU32(pt     ) ^ rk[0];
        s1 = GETU32(pt +  4) ^ rk[1];
        s2 = GETU32(pt +  8) ^ rk[2];
        s3 = GETU32(pt + 12) ^ rk[3];

        /* Deliberately make some reads from the Sc table to minimize the
         * cache of key data being visible by cache probing.  Hopefully,
         * the compiler won't optimize these operations away. */
        t0 = Sc[0];
        t1 = Sc[32];
        t2 = Sc[64];
        t3 = Sc[96];
        t0 = Sc[128];
        t1 = Sc[160];
        t2 = Sc[192];
        t3 = Sc[224];

        /*
         * Nr - 1 full rounds:
         */
    r = Nr >> 1;
    for (;;) {
        t0 =
            STe0[Sc[(s0 >> 24)       ]] ^
            STe1[Sc[(s1 >> 16) & 0xff]] ^
            STe2[Sc[(s2 >>  8) & 0xff]] ^
            STe3[Sc[(s3      ) & 0xff]] ^
            rk[4];
        t1 =
            STe0[Sc[(s1 >> 24)       ]] ^
            STe1[Sc[(s2 >> 16) & 0xff]] ^
            STe2[Sc[(s3 >>  8) & 0xff]] ^
            STe3[Sc[(s0      ) & 0xff]] ^
            rk[5];
        t2 =
            STe0[Sc[(s2 >> 24)       ]] ^
            STe1[Sc[(s3 >> 16) & 0xff]] ^
            STe2[Sc[(s0 >>  8) & 0xff]] ^
            STe3[Sc[(s1      ) & 0xff]] ^
            rk[6];
        t3 =
            STe0[Sc[(s3 >> 24)       ]] ^
            STe1[Sc[(s0 >> 16) & 0xff]] ^
            STe2[Sc[(s1 >>  8) & 0xff]] ^
            STe3[Sc[(s2      ) & 0xff]] ^
            rk[7];

        rk += 8;
        if (--r == 0) {
            break;
        }

        s0 =
            STe0[Sc[(t0 >> 24)       ]] ^
            STe1[Sc[(t1 >> 16) & 0xff]] ^
            STe2[Sc[(t2 >>  8) & 0xff]] ^
            STe3[Sc[(t3      ) & 0xff]] ^
            rk[0];
        s1 =
            STe0[Sc[(t1 >> 24)       ]] ^
            STe1[Sc[(t2 >> 16) & 0xff]] ^
            STe2[Sc[(t3 >>  8) & 0xff]] ^
            STe3[Sc[(t0      ) & 0xff]] ^
            rk[1];
        s2 =
            STe0[Sc[(t2 >> 24)       ]] ^
            STe1[Sc[(t3 >> 16) & 0xff]] ^
            STe2[Sc[(t0 >>  8) & 0xff]] ^
            STe3[Sc[(t1      ) & 0xff]] ^
            rk[2];
        s3 =
            STe0[Sc[(t3 >> 24)       ]] ^
            STe1[Sc[(t0 >> 16) & 0xff]] ^
            STe2[Sc[(t1 >>  8) & 0xff]] ^
            STe3[Sc[(t2      ) & 0xff]] ^
            rk[3];
    }
        /*
         * apply last round and
         * map cipher state to byte array block:
         */
        s0 =
                (STe4[Sc[(t0 >> 24)       ]] & 0xff000000) ^
                (STe4[Sc[(t1 >> 16) & 0xff]] & 0x00ff0000) ^
                (STe4[Sc[(t2 >>  8) & 0xff]] & 0x0000ff00) ^
                (STe4[Sc[(t3      ) & 0xff]] & 0x000000ff) ^
                rk[0];
        PUTU32(ct     , s0);
        s1 =
                (STe4[Sc[(t1 >> 24)       ]] & 0xff000000) ^
                (STe4[Sc[(t2 >> 16) & 0xff]] & 0x00ff0000) ^
                (STe4[Sc[(t3 >>  8) & 0xff]] & 0x0000ff00) ^
                (STe4[Sc[(t0      ) & 0xff]] & 0x000000ff) ^
                rk[1];
        PUTU32(ct +  4, s1);
        s2 =
                (STe4[Sc[(t2 >> 24)       ]] & 0xff000000) ^
                (STe4[Sc[(t3 >> 16) & 0xff]] & 0x00ff0000) ^
                (STe4[Sc[(t0 >>  8) & 0xff]] & 0x0000ff00) ^
                (STe4[Sc[(t1      ) & 0xff]] & 0x000000ff) ^
                rk[2];
        PUTU32(ct +  8, s2);
        s3 =
                (STe4[Sc[(t3 >> 24)       ]] & 0xff000000) ^
                (STe4[Sc[(t0 >> 16) & 0xff]] & 0x00ff0000) ^
                (STe4[Sc[(t1 >>  8) & 0xff]] & 0x0000ff00) ^
                (STe4[Sc[(t2      ) & 0xff]] & 0x000000ff) ^
                rk[3];
        PUTU32(ct + 12, s3);
}