@@ 278,8 278,8 @@ When we write out the equation we need to satisfy, we then arrive at
\begin{aligned}
&\left\langle A (q + \delta) \odot B (q + \delta) - \Delta C (q + \delta), c \right\rangle\\
= &\left\langle A q \odot B q - \Delta C q, c\right\rangle
- + \delta \left(\left\langle A q \odot B_\ell + A_\ell \odot B q - \Delta C_\ell, c \right\rangle \right)
- + \delta^2 \left(\left\langle A_\ell \odot B_\ell, c \right\rangle\right).
+ + \delta \left\langle A q \odot B_\ell + A_\ell \odot B q - \Delta C_\ell, c \right\rangle
+ + \delta^2 \left\langle A_\ell \odot B_\ell, c \right\rangle.
\end{aligned}
As you can observe, if you close your eyes just far enough, this is a
quadratic equation in $\delta$, which we can solve over the field of