~robin_jadoul/blog

0ce5774ecc12b6883394571608d30039f9b9a6df — Robin Jadoul 8 months ago 4537306
Fewer parens
1 files changed, 2 insertions(+), 2 deletions(-)

M posts/2024-03-18-breakfaest.md
M posts/2024-03-18-breakfaest.md => posts/2024-03-18-breakfaest.md +2 -2
@@ 278,8 278,8 @@ When we write out the equation we need to satisfy, we then arrive at
\begin{aligned}
&\left\langle A (q + \delta) \odot B (q + \delta) - \Delta C (q + \delta), c \right\rangle\\
  = &\left\langle A q \odot B q - \Delta C q, c\right\rangle
  + \delta \left(\left\langle A q \odot B_\ell + A_\ell \odot B q - \Delta C_\ell, c \right\rangle \right)
  + \delta^2 \left(\left\langle A_\ell \odot B_\ell, c \right\rangle\right).
  + \delta \left\langle A q \odot B_\ell + A_\ell \odot B q - \Delta C_\ell, c \right\rangle
  + \delta^2 \left\langle A_\ell \odot B_\ell, c \right\rangle.
\end{aligned}
As you can observe, if you close your eyes just far enough, this is a
quadratic equation in $\delta$, which we can solve over the field of