~j-james/math

7a2a42d5d595ac3b24111a1bdb4757ee692ea565 — j-james 3 months ago 5d4afde master
Fix a rendering issue on 7-3
1 files changed, 1 insertions(+), 1 deletions(-)

M calculus/7-3_volume-as-an-integral.md
M calculus/7-3_volume-as-an-integral.md => calculus/7-3_volume-as-an-integral.md +1 -1
@@ 34,7 34,7 @@ Note that you must account for different axes of rotation, whether it be $x = 3$
### The Washer Method
The only difference between the washer and the disc method is that there is a **hole** to subtract. As such, the washer method is **the volume of the outside function subtracted by the inside function**.

$$Volume = \int_a^b\pi\ R(y)^2 dy - \int_a^b\pi\ r(y)^2 dy = \int_a^b \pi\$$
$$Volume = \int_a^b\pi\ R(y)^2 dy - \int_a^b\pi\ r(y)^2 dy = \int_a^b \pi$$

![Horizontal Washer Method](../assets/calculus/7-3_washer-method-horizontal.png)