refs

master
browse log

clone

read-only
https://git.sr.ht/~hrbrmstr/statebins
read/write
git@git.sr.ht:~hrbrmstr/statebins

Project Status: Active – The project has reached a stable, usable
state and is being actively
developed. Signed
by Signed commit
% Linux build
Status Windows build
status Coverage
Status cran
checks CRAN
status Minimal R
Version License

statebins

Create ‘U.S.’ Uniform Square State Cartogram Heatmaps

Description

Cartogram heatmaps are an alternative to choropleth maps for ‘USA’ States and are based on work by the ‘Washington Post’ graphics department in their report on “The states most threatened by trade” http://www.washingtonpost.com/wp-srv/special/business/states-most-threatened-by-trade/. “State bins” preserve as much of the geographic placement of the states as possible but has the look and feel of a traditional heatmap. Functions are provided that allow for use of a binned, discrete scale, a continuous scale or manually specified colors depending on what is needed for the underlying data.

What’s Inside The Tin

The following functions are implemented:

  • geom_statebins: A statebins Geom
  • theme_statebins: Base statebins theme

Installation

install.packages("statebins", repos = "https://cinc.rud.is")
# or
remotes::install_git("https://git.rud.is/hrbrmstr/statebins.git")
# or
remotes::install_git("https://git.sr.ht/~hrbrmstr/statebins")
# or
remotes::install_gitlab("hrbrmstr/statebins")
# or
remotes::install_bitbucket("hrbrmstr/statebins")
# or
remotes::install_github("hrbrmstr/statebins")

NOTE: To use the ‘remotes’ install options you will need to have the {remotes} package installed.

Usage

All of the following examples use the WaPo data. It looks like the columns they use are scaled data and I didn’t take the time to figure out what they did, so the final figure just mimics their output (including the non-annotated legend).

library(statebins)
library(cdcfluview)
library(hrbrthemes)
library(tidyverse)

# current verison
packageVersion("statebins")
## [1] '2.0.0'

The original wapo data

adat <- read_csv(system.file("extdata", "wapostates.csv", package="statebins"))

mutate(
  adat, 
  share = cut(avgshare94_00, breaks = 4, labels = c("0-1", "1-2", "2-3", "3-4"))
) %>% 
  statebins(
    value_col = "share", 
    ggplot2_scale_function = scale_fill_brewer,
    name = "Share of workforce with jobs lost or threatened by trade"
  ) +
  labs(title = "1994-2000") +
  theme_statebins()

Continuous scale, legend on top

statebins(
  adat, 
  value_col = "avgshare01_07",
  name = "Share of workforce with jobs lost or threatened by trade",
  palette = "OrRd", 
  direction = 1
) +
  labs(x="2001-2007") + 
  theme_statebins(legend_position="top")

Continuous scale, no legend

statebins(adat, value_col = "avgshare08_12", palette = "Purples") +
  labs(x="2008-2010") +
  theme_statebins(legend_position = "none")

Mortality data (has Puerto Rico)

# from: http://www.cdc.gov/nchs/fastats/state-and-territorial-data.htm

dat <- read_csv(system.file("extdata", "deaths.csv", package="statebins"))

statebins(dat, value_col = "death_rate", name="Per 100K pop") +
  labs(title="Mortality Rate (2010)") +
  theme_statebins()

Fertility data

statebins(dat, value_col="fertility_rate", name="Per 100K pop", palette="PuBuGn") +
  labs(title="Fertility Rate (2010)") +
  theme_statebins()

Manual - perhaps good for elections?

election_2012 <- suppressMessages(read_csv(system.file("extdata", "election2012.csv", package="statebins")))

mutate(election_2012, value = ifelse(is.na(Obama), "Romney", "Obama")) %>% 
  statebins(
    font_size=4, dark_label = "white", light_label = "white",
    ggplot2_scale_function = scale_fill_manual,
    name = "Winner",
    values = c(Romney = "#2166ac", Obama = "#b2182b")
  ) +
  theme_statebins()

Rounded rects!

You can pass in a grid::units() call for the radius parameter.

Slight curves:

data(USArrests)

USArrests$state <- rownames(USArrests)
statebins(USArrests, value_col="Assault", name = "Assault", round=TRUE) +
  theme_statebins(legend_position="right")

Circles!

statebins(USArrests, value_col="Assault", name = "Assault", round=TRUE, 
          radius=grid::unit(16, "pt"), palette="Reds", direction=1) +
  theme_statebins(legend_position="right")

Geom

flu <- ili_weekly_activity_indicators(2017)

ggplot(flu, aes(state=statename, fill=activity_level)) +
  geom_statebins() +
  coord_equal() +
  viridis::scale_fill_viridis(
    name = "ILI Activity Level  ", limits=c(0,10), breaks=0:10, option = "magma", direction = -1
  ) +
  facet_wrap(~weekend) +
  labs(title="2017-18 Flu Season ILI Activity Level") +
  theme_statebins(base_family = font_ps) +
  theme(plot.title=element_text(size=16, hjust=0)) +
  theme(plot.margin = margin(30,30,30,30))

All the “states”

statebins now has PR, VI & NYC (by name or abbreviation) so you can use them, too:

library(statebins)
library(tidyverse)
library(viridis)

data(USArrests)

# make up some data for the example

rownames_to_column(USArrests, "state") %>%
  bind_rows(
    data_frame(
      state = c("Virgin Islands", "Puerto Rico", "New York City"),
      Murder = rep(mean(max(USArrests$Murder),3)),
      Assault = rep(mean(max(USArrests$Assault),3)),
      Rape = rep(mean(max(USArrests$Rape),3)),
      UrbanPop = c(93, 95, 100)
    )
  ) -> us_arrests

statebins(us_arrests, value_col="Assault",
          ggplot2_scale_function = viridis::scale_fill_viridis) +
  labs(title="USArrests + made up data") +
  theme_statebins("right")