~hrbrmstr/daybreak

ref: af8ff3a5efbe1173d1a188e6d8d884c2bc809e9c daybreak/src/sunriset.c -rw-r--r-- 17.2 KiB
af8ff3a5 — hrbrmstr plain C version 1 year, 8 months ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/* +++Date last modified: 05-Jul-1997 */
/* Updated comments, 05-Aug-2013 */

/*

SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
             the length of the day at any date and latitude

Written as DAYLEN.C, 1989-08-16

Modified to SUNRISET.C, 1992-12-01
Split to a header file, 2017-12-10, by Joachim Nilsson

(c) Paul Schlyter, 1989, 1992

Released to the public domain by Paul Schlyter, December 1992

*/

#include <stdio.h>
#include <math.h>

#include "sunriset.h"

/* A small test program */
// #ifndef SUNRISET_LIB
// int main(void)
// {
//       int year,month,day;
//       double lon, lat;
//       double daylen, civlen, nautlen, astrlen;
//       double rise, set, civ_start, civ_end, naut_start, naut_end,
//              astr_start, astr_end;
//       int    rs‘, civ, naut, astr;
//       char buf[80];
//
//       printf( "Latitude (+ is north) and longitude (+ is east) : " );
//       fgets(buf, 80, stdin);
//       sscanf(buf, "%lf %lf", &lat, &lon );
//
//       for(;;)
//       {
//             printf( "Input date ( yyyy mm dd ) (ctrl-C exits): " );
//             fgets(buf, 80, stdin);
//             sscanf(buf, "%d %d %d", &year, &month, &day );
//
//             daylen  = day_length(year,month,day,lon,lat);
//             civlen  = day_civil_twilight_length(year,month,day,lon,lat);
//             nautlen = day_nautical_twilight_length(year,month,day,lon,lat);
//             astrlen = day_astronomical_twilight_length(year,month,day,
//                   lon,lat);
//
//             printf( "Day length:                 %5.2f hours\n", daylen );
//             printf( "With civil twilight         %5.2f hours\n", civlen );
//             printf( "With nautical twilight      %5.2f hours\n", nautlen );
//             printf( "With astronomical twilight  %5.2f hours\n", astrlen );
//             printf( "Length of twilight: civil   %5.2f hours\n",
//                   (civlen-daylen)/2.0);
//             printf( "                  nautical  %5.2f hours\n",
//                   (nautlen-daylen)/2.0);
//             printf( "              astronomical  %5.2f hours\n",
//                   (astrlen-daylen)/2.0);
//
//             rs   = sun_rise_set         ( year, month, day, lon, lat,
//                                           &rise, &set );
//             civ  = civil_twilight       ( year, month, day, lon, lat,
//                                           &civ_start, &civ_end );
//             naut = nautical_twilight    ( year, month, day, lon, lat,
//                                           &naut_start, &naut_end );
//             astr = astronomical_twilight( year, month, day, lon, lat,
//                                           &astr_start, &astr_end );
//
//             printf( "Sun at south %5.2fh UT\n", (rise+set)/2.0 );
//
//             switch( rs )
//             {
//                 case 0:
//                     printf( "Sun rises %5.2fh UT, sets %5.2fh UT\n",
//                              rise, set );
//                     break;
//                 case +1:
//                     printf( "Sun above horizon\n" );
//                     break;
//                 case -1:
//                     printf( "Sun below horizon\n" );
//                     break;
//             }
//
//             switch( civ )
//             {
//                 case 0:
//                     printf( "Civil twilight starts %5.2fh, "
//                             "ends %5.2fh UT\n", civ_start, civ_end );
//                     break;
//                 case +1:
//                     printf( "Never darker than civil twilight\n" );
//                     break;
//                 case -1:
//                     printf( "Never as bright as civil twilight\n" );
//                     break;
//             }
//
//             switch( naut )
//             {
//                 case 0:
//                     printf( "Nautical twilight starts %5.2fh, "
//                             "ends %5.2fh UT\n", naut_start, naut_end );
//                     break;
//                 case +1:
//                     printf( "Never darker than nautical twilight\n" );
//                     break;
//                 case -1:
//                     printf( "Never as bright as nautical twilight\n" );
//                     break;
//             }
//
//             switch( astr )
//             {
//                 case 0:
//                     printf( "Astronomical twilight starts %5.2fh, "
//                             "ends %5.2fh UT\n", astr_start, astr_end );
//                     break;
//                 case +1:
//                     printf( "Never darker than astronomical twilight\n" );
//                     break;
//                 case -1:
//                     printf( "Never as bright as astronomical twilight\n" );
//                     break;
//             }
//       return 0;
//       }
// }
// #endif /* SUNRISET_LIB */

/* The "workhorse" function for sun rise/set times */

int __sunriset__( int year, int month, int day, double lon, double lat,
                  double altit, int upper_limb, double *trise, double *tset )
/***************************************************************************/
/* Note: year,month,date = calendar date, 1801-2099 only.             */
/*       Eastern longitude positive, Western longitude negative       */
/*       Northern latitude positive, Southern latitude negative       */
/*       The longitude value IS critical in this function!            */
/*       altit = the altitude which the Sun should cross              */
/*               Set to -35/60 degrees for rise/set, -6 degrees       */
/*               for civil, -12 degrees for nautical and -18          */
/*               degrees for astronomical twilight.                   */
/*         upper_limb: non-zero -> upper limb, zero -> center         */
/*               Set to non-zero (e.g. 1) when computing rise/set     */
/*               times, and to zero when computing start/end of       */
/*               twilight.                                            */
/*        *rise = where to store the rise time                        */
/*        *set  = where to store the set  time                        */
/*                Both times are relative to the specified altitude,  */
/*                and thus this function can be used to compute       */
/*                various twilight times, as well as rise/set times   */
/* Return value:  0 = sun rises/sets this day, times stored at        */
/*                    *trise and *tset.                               */
/*               +1 = sun above the specified "horizon" 24 hours.     */
/*                    *trise set to time when the sun is at south,    */
/*                    minus 12 hours while *tset is set to the south  */
/*                    time plus 12 hours. "Day" length = 24 hours     */
/*               -1 = sun is below the specified "horizon" 24 hours   */
/*                    "Day" length = 0 hours, *trise and *tset are    */
/*                    both set to the time when the sun is at south.  */
/*                                                                    */
/**********************************************************************/
{
      double  d,  /* Days since 2000 Jan 0.0 (negative before) */
      sr,         /* Solar distance, astronomical units */
      sRA,        /* Sun's Right Ascension */
      sdec,       /* Sun's declination */
      sradius,    /* Sun's apparent radius */
      t,          /* Diurnal arc */
      tsouth,     /* Time when Sun is at south */
      sidtime;    /* Local sidereal time */

      int rc = 0; /* Return cde from function - usually 0 */

      /* Compute d of 12h local mean solar time */
      d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;

      /* Compute the local sidereal time of this moment */
      sidtime = revolution( GMST0(d) + 180.0 + lon );

      /* Compute Sun's RA, Decl and distance at this moment */
      sun_RA_dec( d, &sRA, &sdec, &sr );

      /* Compute time when Sun is at south - in hours UT */
      tsouth = 12.0 - rev180(sidtime - sRA)/15.0;

      /* Compute the Sun's apparent radius in degrees */
      sradius = 0.2666 / sr;

      /* Do correction to upper limb, if necessary */
      if ( upper_limb )
            altit -= sradius;

      /* Compute the diurnal arc that the Sun traverses to reach */
      /* the specified altitude altit: */
      {
            double cost;
            cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
                  ( cosd(lat) * cosd(sdec) );
            if ( cost >= 1.0 )
                  rc = -1, t = 0.0;       /* Sun always below altit */
            else if ( cost <= -1.0 )
                  rc = +1, t = 12.0;      /* Sun always above altit */
            else
                  t = acosd(cost)/15.0;   /* The diurnal arc, hours */
      }

      /* Store rise and set times - in hours UT */
      *trise = tsouth - t;
      *tset  = tsouth + t;

      return rc;
}  /* __sunriset__ */



/* The "workhorse" function */


double __daylen__( int year, int month, int day, double lon, double lat,
                   double altit, int upper_limb )
/**********************************************************************/
/* Note: year,month,date = calendar date, 1801-2099 only.             */
/*       Eastern longitude positive, Western longitude negative       */
/*       Northern latitude positive, Southern latitude negative       */
/*       The longitude value is not critical. Set it to the correct   */
/*       longitude if you're picky, otherwise set to to, say, 0.0     */
/*       The latitude however IS critical - be sure to get it correct */
/*       altit = the altitude which the Sun should cross              */
/*               Set to -35/60 degrees for rise/set, -6 degrees       */
/*               for civil, -12 degrees for nautical and -18          */
/*               degrees for astronomical twilight.                   */
/*         upper_limb: non-zero -> upper limb, zero -> center         */
/*               Set to non-zero (e.g. 1) when computing day length   */
/*               and to zero when computing day+twilight length.      */
/**********************************************************************/
{
      double  d,  /* Days since 2000 Jan 0.0 (negative before) */
      obl_ecl,    /* Obliquity (inclination) of Earth's axis */
      sr,         /* Solar distance, astronomical units */
      slon,       /* True solar longitude */
      sin_sdecl,  /* Sine of Sun's declination */
      cos_sdecl,  /* Cosine of Sun's declination */
      sradius,    /* Sun's apparent radius */
      t;          /* Diurnal arc */

      /* Compute d of 12h local mean solar time */
      d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;

      /* Compute obliquity of ecliptic (inclination of Earth's axis) */
      obl_ecl = 23.4393 - 3.563E-7 * d;

      /* Compute Sun's ecliptic longitude and distance */
      sunpos( d, &slon, &sr );

      /* Compute sine and cosine of Sun's declination */
      sin_sdecl = sind(obl_ecl) * sind(slon);
      cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl );

      /* Compute the Sun's apparent radius, degrees */
      sradius = 0.2666 / sr;

      /* Do correction to upper limb, if necessary */
      if ( upper_limb )
            altit -= sradius;

      /* Compute the diurnal arc that the Sun traverses to reach */
      /* the specified altitude altit: */
      {
            double cost;
            cost = ( sind(altit) - sind(lat) * sin_sdecl ) /
                  ( cosd(lat) * cos_sdecl );
            if ( cost >= 1.0 )
                  t = 0.0;                      /* Sun always below altit */
            else if ( cost <= -1.0 )
                  t = 24.0;                     /* Sun always above altit */
            else  t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */
      }
      return t;
}  /* __daylen__ */


/* This function computes the Sun's position at any instant */

void sunpos( double d, double *lon, double *r )
/******************************************************/
/* Computes the Sun's ecliptic longitude and distance */
/* at an instant given in d, number of days since     */
/* 2000 Jan 0.0.  The Sun's ecliptic latitude is not  */
/* computed, since it's always very near 0.           */
/******************************************************/
{
      double M,         /* Mean anomaly of the Sun */
             w,         /* Mean longitude of perihelion */
                        /* Note: Sun's mean longitude = M + w */
             e,         /* Eccentricity of Earth's orbit */
             E,         /* Eccentric anomaly */
             x, y,      /* x, y coordinates in orbit */
             v;         /* True anomaly */

      /* Compute mean elements */
      M = revolution( 356.0470 + 0.9856002585 * d );
      w = 282.9404 + 4.70935E-5 * d;
      e = 0.016709 - 1.151E-9 * d;

      /* Compute true longitude and radius vector */
      E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
            x = cosd(E) - e;
      y = sqrt( 1.0 - e*e ) * sind(E);
      *r = sqrt( x*x + y*y );              /* Solar distance */
      v = atan2d( y, x );                  /* True anomaly */
      *lon = v + w;                        /* True solar longitude */
      if ( *lon >= 360.0 )
            *lon -= 360.0;                   /* Make it 0..360 degrees */
}

void sun_RA_dec( double d, double *RA, double *dec, double *r )
/******************************************************/
/* Computes the Sun's equatorial coordinates RA, Decl */
/* and also its distance, at an instant given in d,   */
/* the number of days since 2000 Jan 0.0.             */
/******************************************************/
{
      double lon, obl_ecl, x, y, z;

      /* Compute Sun's ecliptical coordinates */
      sunpos( d, &lon, r );

      /* Compute ecliptic rectangular coordinates (z=0) */
      x = *r * cosd(lon);
      y = *r * sind(lon);

      /* Compute obliquity of ecliptic (inclination of Earth's axis) */
      obl_ecl = 23.4393 - 3.563E-7 * d;

      /* Convert to equatorial rectangular coordinates - x is unchanged */
      z = y * sind(obl_ecl);
      y = y * cosd(obl_ecl);

      /* Convert to spherical coordinates */
      *RA = atan2d( y, x );
      *dec = atan2d( z, sqrt(x*x + y*y) );

}  /* sun_RA_dec */


/******************************************************************/
/* This function reduces any angle to within the first revolution */
/* by subtracting or adding even multiples of 360.0 until the     */
/* result is >= 0.0 and < 360.0                                   */
/******************************************************************/

#define INV360    ( 1.0 / 360.0 )

double revolution( double x )
/*****************************************/
/* Reduce angle to within 0..360 degrees */
/*****************************************/
{
      return( x - 360.0 * floor( x * INV360 ) );
}  /* revolution */

double rev180( double x )
/*********************************************/
/* Reduce angle to within +180..+180 degrees */
/*********************************************/
{
      return( x - 360.0 * floor( x * INV360 + 0.5 ) );
}  /* revolution */


/*******************************************************************/
/* This function computes GMST0, the Greenwich Mean Sidereal Time  */
/* at 0h UT (i.e. the sidereal time at the Greenwich meridian at   */
/* 0h UT).  GMST is then the sidereal time at Greenwich at any     */
/* time of the day.  I've generalized GMST0 as well, and define it */
/* as:  GMST0 = GMST - UT  --  this allows GMST0 to be computed at */
/* other times than 0h UT as well.  While this sounds somewhat     */
/* contradictory, it is very practical:  instead of computing      */
/* GMST like:                                                      */
/*                                                                 */
/*  GMST = (GMST0) + UT * (366.2422/365.2422)                      */
/*                                                                 */
/* where (GMST0) is the GMST last time UT was 0 hours, one simply  */
/* computes:                                                       */
/*                                                                 */
/*  GMST = GMST0 + UT                                              */
/*                                                                 */
/* where GMST0 is the GMST "at 0h UT" but at the current moment!   */
/* Defined in this way, GMST0 will increase with about 4 min a     */
/* day.  It also happens that GMST0 (in degrees, 1 hr = 15 degr)   */
/* is equal to the Sun's mean longitude plus/minus 180 degrees!    */
/* (if we neglect aberration, which amounts to 20 seconds of arc   */
/* or 1.33 seconds of time)                                        */
/*                                                                 */
/*******************************************************************/

double GMST0( double d )
{
      double sidtim0;
      /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr  */
      /* L = M + w, as defined in sunpos().  Since I'm too lazy to */
      /* add these numbers, I'll let the C compiler do it for me.  */
      /* Any decent C compiler will add the constants at compile   */
      /* time, imposing no runtime or code overhead.               */
      sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
                          ( 0.9856002585 + 4.70935E-5 ) * d );
      return sidtim0;
}  /* GMST0 */