~ft/aacdec

ref: f71b5e81f563d94fa284977a326520d269d8353e aacdec/libfaad/sbr_fbt.c -rw-r--r-- 23.7 KiB
f71b5e81 — Fabian Greffrath Merge pull request #61 from argilo/clean-formatting 1 year, 12 days ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_fbt.c,v 1.21 2007/11/01 12:33:35 menno Exp $
**/

/* Calculate frequency band tables */

#include "common.h"
#include "structs.h"

#ifdef SBR_DEC

#include <stdlib.h>

#include "sbr_syntax.h"
#include "sbr_fbt.h"

/* static function declarations */
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1);


/* calculate the start QMF channel for the master frequency band table */
/* parameter is also called k0 */
uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode,
                           uint32_t sample_rate)
{
    static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16,
        17, 24, 32, 35, 48 };
    static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0,
        6, 6, 6 };
    static const int8_t offset[7][16] = {
        { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 },
        { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 },
        { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
        { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
        { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 },
        { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 },
        { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 }
    };
    uint8_t startMin = startMinTable[get_sr_index(sample_rate)];
    uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)];

#if 0 /* replaced with table (startMinTable) */
    if (sample_rate >= 64000)
    {
        startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5);
    } else if (sample_rate < 32000) {
        startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5);
    } else {
        startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5);
    }
#endif

    if (bs_samplerate_mode)
    {
        return startMin + offset[offsetIndex][bs_start_freq];

#if 0 /* replaced by offsetIndexTable */
        switch (sample_rate)
        {
        case 16000:
            return startMin + offset[0][bs_start_freq];
        case 22050:
            return startMin + offset[1][bs_start_freq];
        case 24000:
            return startMin + offset[2][bs_start_freq];
        case 32000:
            return startMin + offset[3][bs_start_freq];
        default:
            if (sample_rate > 64000)
            {
                return startMin + offset[5][bs_start_freq];
            } else { /* 44100 <= sample_rate <= 64000 */
                return startMin + offset[4][bs_start_freq];
            }
        }
#endif
    } else {
        return startMin + offset[6][bs_start_freq];
    }
}

static int longcmp(const void *a, const void *b)
{
    return ((int)(*(int32_t*)a - *(int32_t*)b));
}

/* calculate the stop QMF channel for the master frequency band table */
/* parameter is also called k2 */
uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate,
                          uint8_t k0)
{
    if (bs_stop_freq == 15)
    {
        return min(64, k0 * 3);
    } else if (bs_stop_freq == 14) {
        return min(64, k0 * 2);
    } else {
        static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23,
            32, 32, 35, 48, 64, 70, 96 };
        static const int8_t offset[12][14] = {
            { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 },
            { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 },
            { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 },
            { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 },
            { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 },
            { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
            { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
            { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 },
            { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 },
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 },
            { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 }
        };
#if 0
        uint8_t i;
        int32_t stopDk[13], stopDk_t[14], k2;
#endif
        uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)];

#if 0 /* replaced by table lookup */
        if (sample_rate >= 64000)
        {
            stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5);
        } else if (sample_rate < 32000) {
            stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5);
        } else {
            stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5);
        }
#endif

#if 0 /* replaced by table lookup */
        /* diverging power series */
        for (i = 0; i <= 13; i++)
        {
            stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5);
        }
        for (i = 0; i < 13; i++)
        {
            stopDk[i] = stopDk_t[i+1] - stopDk_t[i];
        }

        /* needed? */
        qsort(stopDk, 13, sizeof(stopDk[0]), longcmp);

        k2 = stopMin;
        for (i = 0; i < bs_stop_freq; i++)
        {
            k2 += stopDk[i];
        }
        return min(64, k2);
#endif
        /* bs_stop_freq <= 13 */
        return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]);
    }

    return 0;
}

/* calculate the master frequency table from k0, k2, bs_freq_scale
   and bs_alter_scale

   version for bs_freq_scale = 0
*/
uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2,
                                   uint8_t bs_alter_scale)
{
    int8_t incr;
    uint8_t k;
    uint8_t dk;
    uint32_t nrBands, k2Achieved;
    int32_t k2Diff, vDk[64] = {0};

    /* mft only defined for k2 > k0 */
    if (k2 <= k0)
    {
        sbr->N_master = 0;
        return 1;
    }

    dk = bs_alter_scale ? 2 : 1;

#if 0 /* replaced by float-less design */
    nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f);
#else
    if (bs_alter_scale)
    {
        nrBands = (((k2-k0+2)>>2)<<1);
    } else {
        nrBands = (((k2-k0)>>1)<<1);
    }
#endif
    nrBands = min(nrBands, 63);
    if (nrBands <= 0)
        return 1;

    k2Achieved = k0 + nrBands * dk;
    k2Diff = k2 - k2Achieved;
    for (k = 0; k < nrBands; k++)
        vDk[k] = dk;

    if (k2Diff)
    {
        incr = (k2Diff > 0) ? -1 : 1;
        k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0);

        while (k2Diff != 0)
        {
            vDk[k] -= incr;
            k += incr;
            k2Diff += incr;
        }
    }

    sbr->f_master[0] = k0;
    for (k = 1; k <= nrBands; k++)
        sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]);

    sbr->N_master = (uint8_t)nrBands;
    sbr->N_master = (min(sbr->N_master, 64));

#if 0
    printf("f_master[%d]: ", nrBands);
    for (k = 0; k <= nrBands; k++)
    {
        printf("%d ", sbr->f_master[k]);
    }
    printf("\n");
#endif

    return 0;
}

/*
   This function finds the number of bands using this formula:
    bands * log(a1/a0)/log(2.0) + 0.5
*/
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1)
{
#ifdef FIXED_POINT
    /* table with log2() values */
    static const real_t log2Table[65] = {
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
        COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
        COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
        COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
        COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
        COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
        COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
        COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
        COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
        COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
        COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
        COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
        COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
        COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
        COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
        COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
        COEF_CONST(6.0)
    };
    real_t r0 = log2Table[a0]; /* coef */
    real_t r1 = log2Table[a1]; /* coef */
    real_t r2 = (r1 - r0); /* coef */

    if (warp)
        r2 = MUL_C(r2, COEF_CONST(1.0/1.3));

    /* convert r2 to real and then multiply and round */
    r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1));

    return (r2 >> REAL_BITS);
#else
    real_t div = (real_t)log(2.0);
    if (warp) div *= (real_t)1.3;

    return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5);
#endif
}

static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1)
{
#ifdef FIXED_POINT
    /* table with log() values */
    static const real_t logTable[65] = {
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
        COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
        COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
        COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
        COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
        COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
        COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
        COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
        COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
        COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
        COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
        COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
        COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
        COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
        COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
        COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
        COEF_CONST(4.158883083)
    };
    /* standard Taylor polynomial coefficients for exp(x) around 0 */
    /* a polynomial around x=1 is more precise, as most values are around 1.07,
       but this is just fine already */
    static const real_t c1 = COEF_CONST(1.0);
    static const real_t c2 = COEF_CONST(1.0/2.0);
    static const real_t c3 = COEF_CONST(1.0/6.0);
    static const real_t c4 = COEF_CONST(1.0/24.0);

    real_t r0 = logTable[a0]; /* coef */
    real_t r1 = logTable[a1]; /* coef */
    real_t r2 = (r1 - r0) / bands; /* coef */
    real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2);

    return (rexp >> (COEF_BITS-REAL_BITS)); /* real */
#else
    return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands);
#endif
}

/*
   version for bs_freq_scale > 0
*/
uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2,
                               uint8_t bs_freq_scale, uint8_t bs_alter_scale)
{
    uint8_t k, bands, twoRegions;
    uint8_t k1;
    uint8_t nrBand0, nrBand1;
    int32_t vDk0[64] = {0}, vDk1[64] = {0};
    int32_t vk0[64] = {0}, vk1[64] = {0};
    uint8_t temp1[] = { 6, 5, 4 };
    real_t q, qk;
    int32_t A_1;
#ifdef FIXED_POINT
    real_t rk2, rk0;
#endif

    /* mft only defined for k2 > k0 */
    if (k2 <= k0)
    {
        sbr->N_master = 0;
        return 1;
    }

    bands = temp1[bs_freq_scale-1];

#ifdef FIXED_POINT
    rk0 = (real_t)k0 << REAL_BITS;
    rk2 = (real_t)k2 << REAL_BITS;
    if (rk2 > MUL_C(rk0, COEF_CONST(2.2449)))
#else
    if ((float)k2/(float)k0 > 2.2449)
#endif
    {
        twoRegions = 1;
        k1 = k0 << 1;
    } else {
        twoRegions = 0;
        k1 = k2;
    }

    nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1));
    nrBand0 = min(nrBand0, 63);
    if (nrBand0 <= 0)
        return 1;

    q = find_initial_power(nrBand0, k0, k1);
#ifdef FIXED_POINT
    qk = (real_t)k0 << REAL_BITS;
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
    A_1 = k0;
#else
    qk = REAL_CONST(k0);
    A_1 = (int32_t)(qk + .5);
#endif
    for (k = 0; k <= nrBand0; k++)
    {
        int32_t A_0 = A_1;
#ifdef FIXED_POINT
        qk = MUL_R(qk,q);
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
#else
        qk *= q;
        A_1 = (int32_t)(qk + 0.5);
#endif
        vDk0[k] = A_1 - A_0;
    }

    /* needed? */
    qsort(vDk0, nrBand0, sizeof(vDk0[0]), longcmp);

    vk0[0] = k0;
    for (k = 1; k <= nrBand0; k++)
    {
        vk0[k] = vk0[k-1] + vDk0[k-1];
        if (vDk0[k-1] == 0)
            return 1;
    }

    if (!twoRegions)
    {
        for (k = 0; k <= nrBand0; k++)
            sbr->f_master[k] = (uint8_t) vk0[k];

        sbr->N_master = nrBand0;
        sbr->N_master = min(sbr->N_master, 64);
        return 0;
    }

    nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2));
    nrBand1 = min(nrBand1, 63);

    q = find_initial_power(nrBand1, k1, k2);
#ifdef FIXED_POINT
    qk = (real_t)k1 << REAL_BITS;
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
    A_1 = k1;
#else
    qk = REAL_CONST(k1);
    A_1 = (int32_t)(qk + .5);
#endif
    for (k = 0; k <= nrBand1 - 1; k++)
    {
        int32_t A_0 = A_1;
#ifdef FIXED_POINT
        qk = MUL_R(qk,q);
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
#else
        qk *= q;
        A_1 = (int32_t)(qk + 0.5);
#endif
        vDk1[k] = A_1 - A_0;
    }

    if (vDk1[0] < vDk0[nrBand0 - 1])
    {
        int32_t change;

        /* needed? */
        qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), longcmp);
        change = vDk0[nrBand0 - 1] - vDk1[0];
        vDk1[0] = vDk0[nrBand0 - 1];
        vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change;
    }

    /* needed? */
    qsort(vDk1, nrBand1, sizeof(vDk1[0]), longcmp);
    vk1[0] = k1;
    for (k = 1; k <= nrBand1; k++)
    {
        vk1[k] = vk1[k-1] + vDk1[k-1];
        if (vDk1[k-1] == 0)
            return 1;
    }

    sbr->N_master = nrBand0 + nrBand1;
    sbr->N_master = min(sbr->N_master, 64);
    for (k = 0; k <= nrBand0; k++)
    {
        sbr->f_master[k] =  (uint8_t) vk0[k];
    }
    for (k = nrBand0 + 1; k <= sbr->N_master; k++)
    {
        sbr->f_master[k] = (uint8_t) vk1[k - nrBand0];
    }

#if 0
    printf("f_master[%d]: ", sbr->N_master);
    for (k = 0; k <= sbr->N_master; k++)
    {
        printf("%d ", sbr->f_master[k]);
    }
    printf("\n");
#endif

    return 0;
}

/* calculate the derived frequency border tables from f_master */
uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band,
                                uint8_t k2)
{
    uint8_t k, i;
    uint32_t minus;

    /* The following relation shall be satisfied: bs_xover_band < N_Master */
    if (sbr->N_master <= bs_xover_band)
        return 1;

    sbr->N_high = sbr->N_master - bs_xover_band;
    sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1));

    sbr->n[0] = sbr->N_low;
    sbr->n[1] = sbr->N_high;

    for (k = 0; k <= sbr->N_high; k++)
    {
        sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band];
    }

    sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0];
    if (sbr->M > MAX_M)
        return 1;
    sbr->kx = sbr->f_table_res[HI_RES][0];
    if (sbr->kx > 32)
        return 1;
    if (sbr->kx + sbr->M > 64)
        return 1;

    minus = (sbr->N_high & 1) ? 1 : 0;

    for (k = 0; k <= sbr->N_low; k++)
    {
        if (k == 0)
            i = 0;
        else
            i = (uint8_t)(2*k - minus);
        sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i];
    }

#if 0
    printf("bs_freq_scale: %d\n", sbr->bs_freq_scale);
    printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands);
    printf("f_table_res[HI_RES][%d]: ", sbr->N_high);
    for (k = 0; k <= sbr->N_high; k++)
    {
        printf("%d ", sbr->f_table_res[HI_RES][k]);
    }
    printf("\n");
#endif
#if 0
    printf("f_table_res[LO_RES][%d]: ", sbr->N_low);
    for (k = 0; k <= sbr->N_low; k++)
    {
        printf("%d ", sbr->f_table_res[LO_RES][k]);
    }
    printf("\n");
#endif

    sbr->N_Q = 0;
    if (sbr->bs_noise_bands == 0)
    {
        sbr->N_Q = 1;
    } else {
#if 0
        sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5));
#else
        sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2)));
#endif
        sbr->N_Q = min(5, sbr->N_Q);
    }

    for (k = 0; k <= sbr->N_Q; k++)
    {
        if (k == 0)
        {
            i = 0;
        } else {
            /* i = i + (int32_t)((sbr->N_low - i)/(sbr->N_Q + 1 - k)); */
            i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k);
        }
        sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i];
    }

    /* build table for mapping k to g in hf patching */
    for (k = 0; k < 64; k++)
    {
        uint8_t g;
        for (g = 0; g < sbr->N_Q; g++)
        {
            if ((sbr->f_table_noise[g] <= k) &&
                (k < sbr->f_table_noise[g+1]))
            {
                sbr->table_map_k_to_g[k] = g;
                break;
            }
        }
    }

#if 0
    printf("f_table_noise[%d]: ", sbr->N_Q);
    for (k = 0; k <= sbr->N_Q; k++)
    {
        printf("%d ", sbr->f_table_noise[k] - sbr->kx);
    }
    printf("\n");
#endif

    return 0;
}

/* TODO: blegh, ugly */
/* Modified to calculate for all possible bs_limiter_bands always
 * This reduces the number calls to this functions needed (now only on
 * header reset)
 */
void limiter_frequency_table(sbr_info *sbr)
{
#if 0
    static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2),
        REAL_CONST(2), REAL_CONST(3) };
#else
    static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152),
        REAL_CONST(1.185093), REAL_CONST(1.119872) };
#endif
    uint8_t k, s;
    int8_t nrLim;
#if 0
    real_t limBands;
#endif

    sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx;
    sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx;
    sbr->N_L[0] = 1;

#if 0
    printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]);
    for (k = 0; k <= sbr->N_L[0]; k++)
    {
        printf("%d ", sbr->f_table_lim[0][k]);
    }
    printf("\n");
#endif

    for (s = 1; s < 4; s++)
    {
        int32_t limTable[100 /*TODO*/] = {0};
        uint8_t patchBorders[64/*??*/] = {0};

#if 0
        limBands = limiterBandsPerOctave[s - 1];
#endif

        patchBorders[0] = sbr->kx;
        for (k = 1; k <= sbr->noPatches; k++)
        {
            patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1];
        }

        for (k = 0; k <= sbr->N_low; k++)
        {
            limTable[k] = sbr->f_table_res[LO_RES][k];
        }
        for (k = 1; k < sbr->noPatches; k++)
        {
            limTable[k+sbr->N_low] = patchBorders[k];
        }

        /* needed */
        qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp);
        k = 1;
        nrLim = sbr->noPatches + sbr->N_low - 1;

        if (nrLim < 0) // TODO: BIG FAT PROBLEM
            return;

restart:
        if (k <= nrLim)
        {
            real_t nOctaves;

            if (limTable[k-1] != 0)
#if 0
                nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0));
#else
#ifdef FIXED_POINT
                nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1]));
#else
                nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1];
#endif
#endif
            else
                nOctaves = 0;

#if 0
            if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49))
#else
            if (nOctaves < limiterBandsCompare[s - 1])
#endif
            {
                uint8_t i;
                if (limTable[k] != limTable[k-1])
                {
                    uint8_t found = 0, found2 = 0;
                    for (i = 0; i <= sbr->noPatches; i++)
                    {
                        if (limTable[k] == patchBorders[i])
                            found = 1;
                    }
                    if (found)
                    {
                        found2 = 0;
                        for (i = 0; i <= sbr->noPatches; i++)
                        {
                            if (limTable[k-1] == patchBorders[i])
                                found2 = 1;
                        }
                        if (found2)
                        {
                            k++;
                            goto restart;
                        } else {
                            /* remove (k-1)th element */
                            limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low];
                            qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp);
                            nrLim--;
                            goto restart;
                        }
                    }
                }
                /* remove kth element */
                limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low];
                qsort(limTable, nrLim, sizeof(limTable[0]), longcmp);
                nrLim--;
                goto restart;
            } else {
                k++;
                goto restart;
            }
        }

        sbr->N_L[s] = nrLim;
        for (k = 0; k <= nrLim; k++)
        {
            sbr->f_table_lim[s][k] = limTable[k] - sbr->kx;
        }

#if 0
        printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]);
        for (k = 0; k <= sbr->N_L[s]; k++)
        {
            printf("%d ", sbr->f_table_lim[s][k]);
        }
        printf("\n");
#endif
    }
}

#endif