@@ 151,7 151,7 @@ where h and k are two positive integers. This statement is true for any e and d
ed \equiv 1 \bmod ((p-1)(q-1))
[/tex]
-because [texi](p-1)(q-1)[/texi] is divisible by \lambda (pq), and therefore also by [texi]p-1[/texi] and [texi]q-1[/texi].
+because [texi](p-1)(q-1)[/texi] is divisible by [texi]\lambda (pq)[/texi], and therefore also by [texi]p-1[/texi] and [texi]q-1[/texi].
By the properties of the modulus operator, checking if [texi]a \equiv b \bmod pq[/texi] is equivalent to checking if [texi]a \equiv b \bmod p[/texi] and [texi]a \equiv b \bmod q[/texi] separately.