~eliasnaur/gio

ref: 2c07b2dc0ea2 gio/op/clip/shapes.go -rw-r--r-- 4.0 KiB
2c07b2dcElias Naur headless: clear background to transparent, not white 4 days ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// SPDX-License-Identifier: Unlicense OR MIT

package clip

import (
	"image"
	"math"

	"gioui.org/f32"
	"gioui.org/op"
)

// Rect represents the clip area of a pixel-aligned rectangle.
type Rect image.Rectangle

// Op returns the op for the rectangle.
func (r Rect) Op() Op {
	return Op{
		outline: true,
		path: PathSpec{
			bounds: image.Rectangle(r),
		},
	}
}

// Add the clip operation.
func (r Rect) Add(ops *op.Ops) {
	r.Op().Add(ops)
}

// UniformRRect returns an RRect with all corner radii set to the
// provided radius.
func UniformRRect(rect f32.Rectangle, radius float32) RRect {
	return RRect{
		Rect: rect,
		SE:   radius,
		SW:   radius,
		NE:   radius,
		NW:   radius,
	}
}

// RRect represents the clip area of a rectangle with rounded
// corners.
//
// Specify a square with corner radii equal to half the square size to
// construct a circular clip area.
type RRect struct {
	Rect f32.Rectangle
	// The corner radii.
	SE, SW, NW, NE float32
}

// Op returns the op for the rounded rectangle.
func (rr RRect) Op(ops *op.Ops) Op {
	if rr.SE == 0 && rr.SW == 0 && rr.NW == 0 && rr.NE == 0 {
		r := image.Rectangle{
			Min: image.Point{X: int(rr.Rect.Min.X), Y: int(rr.Rect.Min.Y)},
			Max: image.Point{X: int(rr.Rect.Max.X), Y: int(rr.Rect.Max.Y)},
		}
		// Only use Rect if rr is pixel-aligned, as Rect is guaranteed to be.
		if fPt(r.Min) == rr.Rect.Min && fPt(r.Max) == rr.Rect.Max {
			return Rect(r).Op()
		}
	}
	return Outline{Path: rr.Path(ops)}.Op()
}

// Add the rectangle clip.
func (rr RRect) Add(ops *op.Ops) {
	rr.Op(ops).Add(ops)
}

// Path returns the PathSpec for the rounded rectangle.
func (rr RRect) Path(ops *op.Ops) PathSpec {
	var p Path
	p.Begin(ops)

	// https://pomax.github.io/bezierinfo/#circles_cubic.
	const q = 4 * (math.Sqrt2 - 1) / 3
	const iq = 1 - q

	se, sw, nw, ne := rr.SE, rr.SW, rr.NW, rr.NE
	w, n, e, s := rr.Rect.Min.X, rr.Rect.Min.Y, rr.Rect.Max.X, rr.Rect.Max.Y

	p.MoveTo(f32.Point{X: w + nw, Y: n})
	p.LineTo(f32.Point{X: e - ne, Y: n}) // N
	p.CubeTo(                            // NE
		f32.Point{X: e - ne*iq, Y: n},
		f32.Point{X: e, Y: n + ne*iq},
		f32.Point{X: e, Y: n + ne})
	p.LineTo(f32.Point{X: e, Y: s - se}) // E
	p.CubeTo(                            // SE
		f32.Point{X: e, Y: s - se*iq},
		f32.Point{X: e - se*iq, Y: s},
		f32.Point{X: e - se, Y: s})
	p.LineTo(f32.Point{X: w + sw, Y: s}) // S
	p.CubeTo(                            // SW
		f32.Point{X: w + sw*iq, Y: s},
		f32.Point{X: w, Y: s - sw*iq},
		f32.Point{X: w, Y: s - sw})
	p.LineTo(f32.Point{X: w, Y: n + nw}) // W
	p.CubeTo(                            // NW
		f32.Point{X: w, Y: n + nw*iq},
		f32.Point{X: w + nw*iq, Y: n},
		f32.Point{X: w + nw, Y: n})

	return p.End()
}

// Circle represents the clip area of a circle.
type Circle struct {
	Center f32.Point
	Radius float32
}

// Op returns the op for the circle.
func (c Circle) Op(ops *op.Ops) Op {
	return Outline{Path: c.Path(ops)}.Op()
}

// Add the circle clip.
func (c Circle) Add(ops *op.Ops) {
	c.Op(ops).Add(ops)
}

// Path returns the PathSpec for the circle.
func (c Circle) Path(ops *op.Ops) PathSpec {
	var p Path
	p.Begin(ops)

	center := c.Center
	r := c.Radius

	// https://pomax.github.io/bezierinfo/#circles_cubic.
	const q = 4 * (math.Sqrt2 - 1) / 3

	curve := r * q
	top := f32.Point{X: center.X, Y: center.Y - r}

	p.MoveTo(top)
	p.CubeTo(
		f32.Point{X: center.X + curve, Y: center.Y - r},
		f32.Point{X: center.X + r, Y: center.Y - curve},
		f32.Point{X: center.X + r, Y: center.Y},
	)
	p.CubeTo(
		f32.Point{X: center.X + r, Y: center.Y + curve},
		f32.Point{X: center.X + curve, Y: center.Y + r},
		f32.Point{X: center.X, Y: center.Y + r},
	)
	p.CubeTo(
		f32.Point{X: center.X - curve, Y: center.Y + r},
		f32.Point{X: center.X - r, Y: center.Y + curve},
		f32.Point{X: center.X - r, Y: center.Y},
	)
	p.CubeTo(
		f32.Point{X: center.X - r, Y: center.Y - curve},
		f32.Point{X: center.X - curve, Y: center.Y - r},
		top,
	)
	return p.End()
}

func fPt(p image.Point) f32.Point {
	return f32.Point{
		X: float32(p.X), Y: float32(p.Y),
	}
}