## ~eliasnaur/gio

a14e818299b24abbc2de121d4af5e35782af78e5 — Larry Clapp 7 months ago
```draw: Fix spelling of Bezier

Sometimes it was "bezier", sometimes "beziér".  Capitalize and put
accent on first e.  https://en.wikipedia.org/wiki/Bézier_curve

Signed-off-by: Larry Clapp <larry@theclapp.org>
```
```2 files changed, 6 insertions(+), 6 deletions(-)

M ui/app/internal/gpu/path.go
M ui/draw/path.go
```
`M ui/app/internal/gpu/path.go => ui/app/internal/gpu/path.go +1 -1`
```@@ 431,7 431,7 @@ void main() {
vec2 extent = clamp(vec2(vFrom.x, vTo.x), -0.5, 0.5);
// Find the t where the curve crosses the middle of the
// extent, x₀.
-	// Given the bezier curve with x coordinates P₀, P₁, P₂
+	// Given the Bézier curve with x coordinates P₀, P₁, P₂
// where P₀ is at the origin, its x coordinate in t
// is given by:
//

```
`M ui/draw/path.go => ui/draw/path.go +5 -5`
```@@ 71,11 71,11 @@ func (p *PathBuilder) Line(to f32.Point) {
}

func (p *PathBuilder) lineTo(to f32.Point) {
-	// Model lines as degenerate quadratic beziers.
+	// Model lines as degenerate quadratic Béziers.
}

// with the control point ctrl.
func (p *PathBuilder) Quad(ctrl, to f32.Point) {

@@ 136,7 136,7 @@ func (p *PathBuilder) quadTo(ctrl, to f32.Point) {
p.expand(bounds)
}

-// Cube records a cubic bezier from the pen through
+// Cube records a cubic Bézier from the pen through
// two control points ending in to.
func (p *PathBuilder) Cube(ctrl0, ctrl1, to f32.Point) {

@@ 155,7 155,7 @@ func (p *PathBuilder) Cube(ctrl0, ctrl1, to f32.Point) {
p.approxCubeTo(0, l*0.001, ctrl0, ctrl1, to)
}

-// approxCube approximates a cubic beziér by a series of quadratic
+// approxCube approximates a cubic Bézier by a series of quadratic
// curves.
func (p *PathBuilder) approxCubeTo(splits int, maxDist float32, ctrl0, ctrl1, to f32.Point) int {
// The idea is from

@@ 178,7 178,7 @@ func (p *PathBuilder) approxCubeTo(splits int, maxDist float32, ctrl0, ctrl1, to
//
// C2 = (3ctrl1 - to)/2
//
-	// The combined quadratic beziér, Q, shares both start and end points with its cubic
+	// The combined quadratic Bézier, Q, shares both start and end points with its cubic
// and use the midpoint between the two curves Q1 and Q2 as control point:
//
// C = (3ctrl0 - pen + 3ctrl1 - to)/4

```